Conceptual Project for Diagnostics of Erosion of the First Wall and Divertor of the Tokamak with Reactor Technologies TRT

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

A conceptual design for diagnosing erosion of the first wall and divertor plates of a tokamak with reactor technologies TRT is proposed. The principles of constructing a diagnostic complex based on the following systems are developed: laser radar, dual-wavelength digital holographic interferometry and active laser IR thermography. An optical scheme is developed for combining the optical paths to input laser radiation and collect scattered light from diagnostic systems. To view the maximum area of the first wall, a scheme for optical scanning of the surface of the first wall and divertor is proposed. Based on optical simulation, the spatial distribution of the power density and phase of interferometry laser radiation in the illuminated region of the first wall is constructed, and the dimensions of the light fields and power density for IR thermography and laser radar diagnostics are determined. An image formation scheme is proposed and the spatial resolution is determined for interferometry and IR thermography methods. The light scattering function on models of the ITER divertor cladding is studied experimentally. The energy of the collected signal is calculated on the basis on the experimental data for all three diagnostic methods and the requirements for the diagnostic equipment are formulated.

Негізгі сөздер

Авторлар туралы

A. Razdobarin

Ioffe Institute, Russian Academy of Sciences; Spectral-Tech; Immanuel Kant Baltic Federal University

Хат алмасуға жауапты Автор.
Email: Aleksey.Razdobarin@mail.ioffe.ru
Ресей, St. Petersburg, 194021; St. Petersburg, 194223; Kaliningrad, 236041

Y. Shubin

Ioffe Institute, Russian Academy of Sciences

Email: Aleksey.Razdobarin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

A. Belokur

Ioffe Institute, Russian Academy of Sciences

Email: Aleksey.Razdobarin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

D. Bogachev

Spectral-Tech

Email: Aleksey.Razdobarin@mail.ioffe.ru
Ресей, St. Petersburg, 194223

D. Elets

Ioffe Institute, Russian Academy of Sciences; Spectral-Tech; Immanuel Kant Baltic Federal University

Email: Aleksey.Razdobarin@mail.ioffe.ru
Ресей, St. Petersburg, 194021; St. Petersburg, 194223; Kaliningrad, 236041

O. Medvedev

Ioffe Institute, Russian Academy of Sciences; Spectral-Tech; Immanuel Kant Baltic Federal University

Email: Aleksey.Razdobarin@mail.ioffe.ru
Ресей, St. Petersburg, 194021; St. Petersburg, 194223; Kaliningrad, 236041

E. Mukhin

Ioffe Institute, Russian Academy of Sciences

Email: Aleksey.Razdobarin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

L. Snigirev

Ioffe Institute, Russian Academy of Sciences

Email: Aleksey.Razdobarin@mail.ioffe.ru
Ресей, St. Petersburg, 194021

I. Alekseenko

Immanuel Kant Baltic Federal University

Email: Aleksey.Razdobarin@mail.ioffe.ru
Ресей, Kaliningrad, 236041

Әдебиет тізімі

  1. De Temmerman G., Hirai T., Pitts R. A. // Plasma Phys. Control. Fusion. 2018. V. 60, P. 044018. https://doi.org/10.1088/1361—6587/aaaf62
  2. Schweer B., Huber A., Sergienko G., Philipps V., Irrek F., Esser H. G., Samm U., Kempenaars M., Stamp M., Gowers C., Richards D. // J. Nucl. Mater. 2005. V. 337—339. P. 570. https://doi.org/10.1016/j.jnucmat.2004.10.156
  3. Pintsuk G., Bobin-Vastra I., Constans S., Gavila P., Rödig M., Riccardi B. // Fusion Eng. Des. 2013. V. 88. P. 1858. https://doi.org/10.1016/j.fusengdes.2013.05.091
  4. Кукушкин А. С., Пшенов А. А. // Физика плазмы. 2021. Т. 47. № 12. С. 1123.
  5. Будаев В.П. // ВАНТ. Термоядерный синтез. 2015. Т. 38. № 4. С. 5.
  6. Autricque A., Peillon S., Gensdarmes F., Sow M., Fedorczak N., Roche H., Pluchery O., Grisolia C. // Nucl. Mater. Energy. 2018. V. 17. P. 284. https://doi.org/10.1016/j.nme.2018.11.013
  7. Cohen R., Ryutov D. // Physics of Plasmas. 1998. V. 5. P. 2194. https://doi.org/10.1063/1.872926
  8. Reichle R., Andrew P., Bates P., Bede O., Casal N., Choi C. H., Barnsley R., Damiani C., Bertalot L., Dubus G., Ferreol J., Jagannathan G., Kocan M., Leipold F., Lisgo S. W., Martin V., Palmer J., Pearce R., Philipps V., Pitts R. A., Passedat G., Puiu A., Suarez A., Shigin P., Shu W., Vayakis G., Veshchev E., Walsh M. // Journal of Nuclear Materials, 2015, V. 463, P. 180. https://doi.org/10.1016/j.jnucmat.2015.01.039
  9. Pedrini G., Calabuig A., Jagannathan G., Kempenaars M., Vayakis G., Osten W. // Applied Optics. 2019. V. 58. Iss. 5. P. A147. https://doi.org/10.1364/AO.58.00A147
  10. Li Т., Almond D. P. and Rees D. A.S. // Meas. Sci. Technol. 2011, 22, 035701. https://doi.org/ 10.1088/0957-0233/22/3/035701
  11. Courtois X., Sortais C., Melyukov D., Gardarein J. L., Semerok A., Grisolia Ch. // Fusion Engineering and Design. 2011. V. 86, P. 1714. https://doi.org/10.1016/j.fusengdes.2011.04.071
  12. Cook R. L., Torrance K. E. // ACM SIGGRAPH Graphics. 1981. V. 15. Issue 3. P. 307. https://doi.org/10.1145/965161.806819
  13. Beckmann P., Spizzichino A. The scattering of electromagnetic waves from rough surfaces. Norwood MA, Artech House Inc., 1987.
  14. Schlick C. // Computer graphics forum. 1994. V. 13. № 3. P. 233. https://doi.org/10.1111/1467-8659.1330233
  15. Werner W. S. M., Glantschnig K., Ambrosch-Draxl C. //Journal of Physical and Chemical Reference Data. 2009. V. 38. № 4. P. 1013. doi: 10.1063/1.3243762
  16. Litnovsky A., Wienhold P., Philipps V., Sergienko G., Schmitz O., Kirschner A., Kreter A., Droste S., Samm U., Mertens Ph., Donné A. H., TEXTOR Team, Rudakov D., Allen S., Boivin R., McLean A., Stangeby P., West W., Wong C., DIII-D Team, Romanyuk A. // J. Nucl. Mat. 2007. V. 363—365. P. 1395.
  17. http://www.lightsensing.com/
  18. Бондаренко А. В., Высоцкий Д. В., Тугаринов С. Н. // ВАНТ. Термоядерный синтез. 2018. Т. 41. № 1. С. 18.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024