Increase in power of radiation and specific concentration of energy of plasma of the high-current Z-pinches due to compression of the cascade wire arrays interacting via magnetic field

Cover Page

Cite item

Full Text

Abstract

Experiments on compression of cascade tungsten wire arrays with reduced inductance at the finalstage of pinching aimed at increasing the specific concentration of plasma energy of the high-current Z-pinches were carried out. The experiments were conducted at the Angara-5-1 facility at load current of up to 4 MA. The highest radiation power per unit pinch length were obtained using the cascade wire arrays in which mass per unit length of the inner wire array with reduced inductance was in the range between 1 and 1.5 that of the outer wire array. The soft X-ray radiation power of P ~ 11 TW was obtained from the 1-cm-long pinch. The specific yield of the soft X-ray radiation was in the range of 130–140 kJ/cm. The total and specific powers of the pinch radiation obtained upon compression of the cascade load with reduced inductance exceeded the total and specific powers of the pinch radiation obtained by compression of a “standard” wire array with a length of 1.6 cm with the same parameters (7–8 TW and 5 TW/cm, respectively). The yield of the soft X-ray radiation did not change upon reduction in the length of the emitting pinch from 1.6 to 0.6 cm. The compression dynamics of such a load is indicative of an increased role played by the magnetic field of the current flowing in the inner cascade in interaction of the cascades. A variant of using interaction of the cascade-array shells via the magnetic field of the inner-cascade current as applied to the scheme of the statistical «hohlraum» with indirect irradiation of spherical targets is proposed. The scheme enables entrainment of part of the current by the inner wire array that confines the statistical «hohlraum». In this case, interaction of cascades allows using nearly entire kinetic energy of the accelerated outer shell for generation of radiation in the statistical «hohlraum» by two forming near-electrode pinches.

About the authors

G. S. Volkov

Troitsk Institute for Innovation and Fusion Research; Russian Technological University Moscow Institute of Radiotechnics, Electronics, and Automation (MIREA)

Email: volkov@triniti.ru
Russian Federation, Troitsk, Moscow oblast, 108840; Moscow, 123308

E. V. Grabovskii

Troitsk Institute for Innovation and Fusion Research

Email: volkov@triniti.ru
Russian Federation, Troitsk, Moscow oblast, 108840

A. N. Gritsuk

Troitsk Institute for Innovation and Fusion Research

Email: volkov@triniti.ru
Russian Federation, Troitsk, Moscow oblast, 108840

K. N. Mitrofanov

Troitsk Institute for Innovation and Fusion Research

Email: volkov@triniti.ru
Russian Federation, Troitsk, Moscow oblast, 108840

A. A. Rupasov

Lebedev Physical Institute, Russian Academy of Sciences

Author for correspondence.
Email: rupasov@sci.lebedev.ru
Russian Federation, Moscow, 119991

I. N. Frolov

Troitsk Institute for Innovation and Fusion Research

Email: rupasov@sci.lebedev.ru
Russian Federation, Troitsk, Moscow oblast, 108840

References

  1. Spielman R.B., Deeney C., Chandler G.A.,, Douglas M.R., Fehl D.L., Matzen M.K., McDaniel D.H., Nash T.J., Porter J.L., Sanford T.W.L., Seamen J.F., Stygar W.A., Struve K.W., Breeze S.P., McGurn J.S., Torres J.A., Zagar D.M., Gilliland T.L., Jobe D.O., McKenney J.L., Mock R.C., Vargas M., Wagoner T., Peterson D.L. // Phys. Plasma. 1998. V. 5. P. 2105.
  2. Jones M.C., Ampleford D.J., Cuneo M.E., Hohlfelder R., Jennings C.A., Johnson D.W., Jones B., Lopez M.R., MacArthur J., Mills J.A., Preston T., Rochau G.A., Savage M., Spencer D., Sinars D.B., Porter J.L. // Rev. Sci. Instrum. 2014. V. 85. P. 083501.
  3. Smirnov V.P. // Plasma Phys. Control Fusion. 1991. V. 33. P. 1697.
  4. Olson R.E., Chandler G.A., Derzon M.S., Hebron D.E., Lash J.S., Leeper R.J., Nash T.J., Rochau G.E., Sanford T.W.L., Alexander N.B., Gibson C.R. // Fusion Technol. 1999. V.35. P. 260.
  5. Wessel F.J., Etlicher B., Choi P. // Phys. Rev. Lett. 1992. V. 69. P. 3181.
  6. Захаров С.В., Смирнов В.П., Гасилов В.А., Круковский А.Ю., Скороваров К.В. Препринт ИАЭ, 4587/6. М.: 1988.
  7. Захаров С.В., Новиков В.Г. Препринт ИПМ им. М.В. Келдыша, № 061, 2002.
  8. Альбиков З.А., Велихов Е.П., Веретенников А.И., Глухих В.А., Грабовский Е.В., Грязнов В.М., Гусев О.А., Жемчужников Г.Н., Зайцев В.И., Золотовский О.А., Истомин Ю.А., Козлов О.В., Крашенинников И.С., Курочкин С.С., Латманизова Г.М., Матвеев В.В., Минеев Г.В., Михайлов В.Н., Недосеев С.Л., Олейник Г.М., Певчев В.П., Перлин А.С., Печерский О.П., Письменный В.Д., Рудаков Л.И., Смирнов В.П., Царфин В.Я., Ямпольский И.Р. // Атомная энергия. 1990. Т. 68. С. 26.
  9. Олейник Г.М. // ПТЭ. 2000. № 3. С. 49.
  10. Волков Г.С., Грабовский Е.В., Зайцев В.И., Зукакишвили Г.Г., Зурин М.В., Митрофанов К.Н., Недосеев С.Л., Олейник Г.М., Порофеев И.Ю., Смирнов В.П., Фролов И.Н. // ПТЭ. 2004. № 5. С. 74.
  11. Олейник Г.М., Браницкий А.В. // ПТЭ. 2000. № 4. С. 58.
  12. Александров В.В., Волков Г.С., Грабовский Е.В., Грицук А.Н., Лахтюшко Н.И., Медовщиков С.Ф., Олейник Г.М., Светлов Е.В. // Физика плазмы. 2014. Т. 40. С. 160.
  13. http://www.vniia.ru/production/bystroprotekaushie-processy/apparatura-dlya-registratsii-bystroprotekayushchikh-protsessov.php
  14. Грабовский Е.В., Зукакишвили Г.Г., Митрофанов К.Н., Олейник Г.М., Фролов И.Н., Сасоров П.В. // Физика плазмы. 2006. Т. 32. С. 33.
  15. Митрофанов К.Н., Александров В.В., Грицук А.Н., Браницкий А.В., Фролов И.Н., Грабовский Е.В., Сасоров П.В., Ольховская О.Г., Зайцев В.И. // Физика плазмы. 2018. Т. 44. С. 157.
  16. Скобляков А.В., Колесников Д.С., Канцырев А.В., Голубев А.А., Рудской И.В., Грицук А.Н., Грабовский Е.В., Митрофанов К.Н., Олейник Г.М. // Физика плазмы. 2023. T. 49. С. 558.
  17. Ning Cheng, Ding Ning, Liu Quan, Yang Zhen-Hua, Fan Wen-Bin, Zhang Yang // Chinese Phys. Lett. 2006. V. 23. P. 1857.
  18. Грабовский Е.В., Зукакишвили Г.Г., Митрофанов К.Н., Олейник Г.М., Фролов И.Н., Сасоров П.В. // Физика плазмы. 2006. Т. 32. С. 33.
  19. Волков Г.С., Грабовский Е.В., Грицук А.Н., Комаров Г.Л., Рупасов А.А., Фролов И.Н., Хилько М.В. // Физика плазмы. 2022. Т. 48. С. 317.
  20. Lebedev S.V., Chittenden J.P., Aliaga-Rossel R., Bland S.N., Dangor A.E., Haines M.G. // Phys. Rev. Lett. 2000. V. 84. P. 1709.
  21. Sanford T.W.L., Jennings C.A., Rochau G.A., Rosenthal S.E., Sarkisov G.S., Sasorov P.V., Stygar W.A., Bennett L.F., Bliss D.E., Chittenden J.P., Cuneo M.E., Haines M.G., Leeper R.J., Mock R.C., Nash T.J., Peterson D.L. // Phys. Rev. Lett. 2007. V. 98. P. 065003-1.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences