Nonlinear Dust Acoustic Waves in the Near Ideal (Gas-Like) Cryogenic Glow Discharge Dusty Plasma

Capa

Citar

Texto integral

Resumo

A dust acoustic instability in the cryogenic glow discharge dusty plasma at a buffer gas temperature of 83 K is experimentally investigated. Estimates for the main plasma parameters are given. It is shown that dusty plasma is close to a ideal plasma (weakly-coupled). The wave–particle interaction is studied, and it has been shown that the wave is strongly nonlinear. The electric field of the wave is estimated, which also indicates its strong nonlinearity. The presence of slight perturbation of the dust concentration by the wave with strong nonlinearity, which is apparently associated with the high kinetic temperature of the dust fraction and the gaseous phase state of the dust cloud, is an important feature of the described experiment.

Sobre autores

F. Trukhachev

Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: svetlov.anton.s@gmail.com
125412, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia

R. Boltnev

Joint Institute for High Temperatures, Russian Academy of Sciences; Branch of Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: boltnev@gmail.com
Moscow, 125412 Russia; Chernogolovka, Moscow oblast, 142432 Russia

A. Alekseevskaya

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: Xeniya.Koss@gmail.com
125412, Moscow, Russia

M. Vasil'ev

Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: svetlov.anton.s@gmail.com
125412, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia

O. Petrov

Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Autor responsável pela correspondência
Email: svetlov.anton.s@gmail.com
125412, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia

Bibliografia

  1. Shukla P.K., Mamun A.A. Introduction to Dusty Plasma Physics. UK, Bristol: Institute of Physics Publishing, 2002.
  2. Фортов В.Е., Храпак А.Г., Храпак С.А., Молот-ков В.И., Петров О.Ф. // УФН. 2004. V. 174. P. 495.
  3. Thomas H.M., Morfill G.E. // Nature. 1996. V. 379. P. 806.
  4. Fortov V.E., Khrapak A.G., Khrapak S.A., Molotkov V.I., Nefedov A.P., Petrov O.F., Torchinsky V.M. // Phys. Plasmas. 2000. V. 7. P. 1374.
  5. Jana M.R., Sen A., Kaw P.K. // Phys. Rev. E. 1993. V. 48. P. 3930.
  6. Fortov V.E., Ivlev A.V., Khrapak S.A., Khrapak A.G., Morfill G.E. // Physics Reports. 2005. V. 421 (1–2). P. 1.
  7. Fortov V.E., Morfill G.E. Complex and Dusty Plasmas: From Laboratory to Space. CRC Press, 2009.
  8. Нефедов А.П., Петров О.Ф., Фортов В.Е. // УФН. 1997. Т. 167. С. 1215.
  9. Trukhachev F.M., Boltnev R.E., Alekseevskaya A.A., Vasiliev M.M., Petrov O.F. // Phys. Plasmas. 2021. V. 28. P. 093701.
  10. Schwabe M., Rubin-Zuzic M., Zhdanov S., Thomas H.M., Morfill G.E. // Phys. Rev. Lett. 2007. V. 99. P. 095002.
  11. Teng L.-W., Chang M.-C., Tseng Y.-P., Lin I. // Phys. Rev. Lett. 2009. V. 103. P. 245005.
  12. Chang M.-C., Teng L.-W., Lin I. // Phys. Rev. E. 2012. V. 85. P. 046410.
  13. Trukhachev F.M., Vasiliev M.M., Petrov O.F., Vasilie-va E.V. // Phys. Rev. E. 2019. V. 100. P. 063202.
  14. Храпак А.Г., Голятина Р.И., Майоров С.А., Хра-пак С.А. // ТВТ. 2020. Т. 58. С. 590.
  15. Trukhachev F.M., Boltnev R.E., Vasiliev M.M., Petrov O.F. // Molecules. 2022. V. 27(1). P. 227.
  16. Khrapak S.A., Ivlev A.V., Morfill G.E., Thomas H.M. // Phys. Rev. E. 2002. V. 66. P. 046414.
  17. Ivlev A.V., Khrapak S.A., Zhdanov S.K., Morfill G.E. // Phys. Rev. Lett. 2004. V. 92. P. 205007.
  18. Ishihara O. // Plasma Phys. Control. Fusion. 2012. V. 5. P. 124020.
  19. Samoilov I.S., Baev V.P., Timofeev A.V., Amirov R.K., Kirillin A.V., Nikolaev V.S., Bedran Z.V. // J. Exp. Theor. Phys. 2017. V. 124. P. 496.
  20. Viehland L.A., Mason E.A. // Atomic Data and Nuclear Data Tables. 1995 V. 60 (1). P. 37.
  21. Видеоизображение пылевого облака https://aip.scitation.org/ doi/suppl/10.1063/ 5.0058560/suppl_file/video_material.mp4.
  22. Trukhachev F.M., Gerasimenko N.V., Vasiliev M.M., Petrov O.F. // New J. Phys. 2021. V. 23. P. 093016.
  23. Mendoza-Briceño C.A., Russel S.M., Mamun A.A. // Planet. Space Sci. 2000. V. 48. P. 599.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (381KB)
3.

Baixar (603KB)
4.

Baixar (94KB)
5.

Baixar (804KB)
6.

Baixar (178KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023