Fast Beam Driven Neutron Yield in Thermonuclear Neutron Source Plasmas

封面

如何引用文章

全文:

详细

The thermonuclear fusion between fast (super-thermal) particles injected in plasma as a neutral beam and the ions of the background plasma is expected to be the main source of fusion neutrons in FNS (fusion neutron source) design based on tokamak. Neutral beam contribution in fusion reactivity and in the total neutron yield depends on the high-energy ion fraction in the integral energy distribution. NESTOR code [1] calculates nuclear fusion rates in the FNS plasma volume, taking into account an external source of high-energy fast ions. Neutral beam model reproduces in detail the actual beam structure in phase space at the injection port plane; while the fast ion distributions in magnetically confined plasma are calculated using a combination of slowing-down classical formulae and magnetic field topology in the tokamak chamber. Here we discuss the issues relevant to the overall neutron production and the contribution of fast ions to the neutron output in plasma.

作者简介

E. Dlougach

National Research Centre “Kurchatov institute”

Email: edlougach@gmail.com
123098, Moscow, Russia

M. Shlenskii

National Research Centre “Kurchatov institute”; National Nuclear Research University “Moscow Engineering Physics Institute”

Email: edlougach@gmail.com
123098, Moscow, Russia; 115409, Moscow, Russia

B. Kuteev

National Research Centre “Kurchatov institute”

编辑信件的主要联系方式.
Email: edlougach@gmail.com
123098, Moscow, Russia

参考

  1. Длугач Е.Д., Шленский М.Н. Программа для расчета объемного источника термоядерных нейтронов в плазме ТИН “NES-TOR”. Свидетельство о государственной регистрации программы для ЭВМ № 2022610362, Реестр программ для ЭВМ, 11.01.2022.
  2. Кутеев Б.В., Гончаров П.Р., Сергеев В.Ю., Хрипу-нов В.И. // Физика плазмы. 2010. Т. 36. С. 307.
  3. Stacey W.M. // Fusion Eng. Des. 2007. V. 82. P. 11.
  4. Kuteev B.V., Goncharov P.R. // Fusion Sci. Technol. 2020. V. 76. P. 836.
  5. Jassby D.L. // Nucl. Fusion. 1975. V. 15. P. 453.
  6. Длугач Е.Д., Кутеев Б.В. // Физика плазмы. 2022. Т. 48. С. 881.
  7. Okano, K. // J. Nucl. Sci. Technol. 1990. V. 27. P. 689.
  8. Gryaznevich M., Chuyanov V.A., Takase Y. // Plasma. 2022. V. 5. P. 247.
  9. Janev R.K., Boley C.D., Post D.E. // Nucl. Fusion. 1989. V. 29. P. 2125.
  10. Shpanskiy Yu.S. and DEMO-FNS Team. // Nucl. Fusion. 2019. V. 59. P. 076014.
  11. Kulcinski G.L., Radel R.F., Davis A. // Fusion Sci. Technol. 2017. V. 72. P. 248.
  12. Wesson J. Tokamaks 4th Edition. – Oxford: Oxford University Press, 2011.
  13. ITER Final Design Report (DDD 5.3). Vienna: International Atomic Energy Agency, 2001.
  14. Шленский М.Н., Длугач Е.Д., Кутеев Б.В. // ВАНТ. Сер. Термоядерный синтез. 2023. Т. 46. С. 97.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (296KB)
3.

下载 (228KB)
4.

下载 (402KB)
5.

下载 (360KB)
6.

下载 (964KB)
7.

下载 (1MB)
8.

下载 (132KB)
9.

下载 (137KB)
10.

下载 (728KB)

版权所有 © Russian Academy of Sciences, 2023