(Стрепт)авидин взаимодействует с гликоконъюгатами
- Авторы: Шилова Н.В.1,2, Полякова С.М.1, Нокель А.Ю.1,2, Липатников А.Д.1, Гордеева Е.А.1, Лаврентьева М.В.3, Бовин Н.В.1
-
Учреждения:
- Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН
- Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова
- МИРЭА – Российский технологический университет
- Выпуск: Том 89, № 11 (2024)
- Страницы: 1950-1955
- Раздел: Регулярные статьи
- URL: https://ter-arkhiv.ru/0320-9725/article/view/681424
- DOI: https://doi.org/10.31857/S0320972524110143
- EDN: https://elibrary.ru/IKGDSV
- ID: 681424
Цитировать
Аннотация
Флуоресцентно меченный и конъюгированный (стрепт)авидин широко используется для визуализации биотинилированных молекул в иммунологических анализах и гистохимии. В представленной работе показано, что кроме биотина, эти белки связывают ряд гликанов, в том числе фрагменты гликопротеиновых и гликолипидных цепей млекопитающих, в частности, антигены системы крови АВО, олиголактозамины, 6-О-сульфатированные олигосахариды. Это взаимодействие дозозависимо ингибируется гликанами в полимерной (но не в мономерной) конъюгированной форме на уровне микромолярной концентрации, т.е. требует поливалентности. С учётом кластерной организации гликанов клетки (гликопротеинов и гликолипидов), при исследовании объектов, содержащих углеводы, это свойство является потенциальным источником ошибки, которую можно предотвратить, избегая большого избытка (стрепт)авидина в аналитической системе.
Ключевые слова
Полный текст

Об авторах
Н. В. Шилова
Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН; Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова
Автор, ответственный за переписку.
Email: pumatnv@gmail.com
Россия, 117997, Москва; 117997, Москва
С. М. Полякова
Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН
Email: pumatnv@gmail.com
Россия, 117997, Москва
А. Ю. Нокель
Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН; Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова
Email: pumatnv@gmail.com
Россия, 117997, Москва; 117997, Москва
А. Д. Липатников
Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН
Email: pumatnv@gmail.com
Россия, 117997, Москва
Е. А. Гордеева
Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН
Email: pumatnv@gmail.com
Россия, 117997, Москва
М. В. Лаврентьева
МИРЭА – Российский технологический университет
Email: pumatnv@gmail.com
Россия, 119571, Москва
Н. В. Бовин
Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН
Email: pumatnv@gmail.com
Россия, 117997, Москва
Список литературы
- Green, M. N. (1990) Avidin and streptavidin, Methods Enzymol., 184, 51-67, https://doi.org/10.1016/0076-6879(90)84259-J.
- Bing, T., Chang, T., Qi, C., Zhang, N., Liu, X., and Shangguan, D. (2012) Specific interactions between adenosine and streptavidin/avidin, Bioorg. Med. Chem. Lett., 22, 7052-7055, https://doi.org/10.1016/j.bmcl.2012.09.088.
- Caparon, M. H., De Ciechi, P. A., Devine, C. S., Olins, P. O., and Lee, S. C. (1996) Analysis of novel streptavidin-binding peptides, identified using a phage display library, shows that amino acids external to a perfectly conserved consensus sequence and to the presented peptides contribute to binding, Mol. Divers., 1, 241-246, https://doi.org/10.1007/BF01715528.
- Houen, G., and Hansen, K. (1997) Interference of sugars with the binding of biotin to streptavidin and avidin, J. Immunol. Methods, 210, 115-123, https://doi.org/10.1016/S0022-1759(97)00166-X.
- Smith, J. A., Xu, G., Feng, R., Janetka, J. W., and Moeller, K. D. (2016) C‐glycosides, array‐based addressable libraries, and the versatility of constant current electrochemistry, Electroanalysis, 28, 2808-2817, https://doi.org/10.1002/elan.201600200.
- Ennen, F., Boye, S., Lederer, A., Cernescu, M., Komber, H., Brutschy, B., Voit, B., and Appelhans, D. (2014) Biohybrid structures consisting of biotinylated glycodendrimers and proteins: influence of the biotin ligand’s number and chemical nature on the biotin–avidin conjugation, Polym. Chem., 5, 1323-1339, https://doi.org/10.1039/C3PY01152F.
- Beber, A., Alqabandi, M., Prévost, C., Viars, F., Lévy, D., Bassereau, P., Bertin, A., and Mangenot, S. (2019) Septin‐based readout of PI(4,5)P2 incorporation into membranes of giant unilamellar vesicles, Cytoskeleton, 76, 92-103, https://doi.org/10.1002/cm.21480.
- Obukhova, P., Tsygankova, S., Chinarev, A., Shilova, N., Nokel, A., Kosma, P., and Bovin, N. (2020) Are there specific antibodies against Neu5Gc epitopes in the blood of healthy individuals? Glycobiology, 30, 395-406, https://doi.org/10.1093/glycob/cwz107.
- Ahmad, N., Gabius, H.-J., Kaltner, H., André, S., Kuwabara, I., Liu, F.-T., Oscarson, S., Norberg, T., and Brewer, C. F. (2002) Thermodynamic binding studies of cell surface carbohydrate epitopes to galectins-1, -3, and -7: evidence for differential binding specificities, Canad. J. Chem., 80, 1096-1104, https://doi.org/10.1139/v02-162.
- Shilova, N., Bovin, N., Maltseva, D., Polyakova, S., Sablina, M., Niwa, H., Zakharova, G., Raygorodskaya, M., Bufeeva, L., Belyi, Y., Hushpulian, D., and Tonevitsky, A. (2022) Specificity of viscumin revised. As probed with a printed glycan array, Biochimie, 202, 94-102, https://doi.org/10.1016/j.biochi.2022.08.009.
- Tuzikov, A., Chinarev, A., Shilova, N., Gordeeva, E., Galanina, O., Ovchinnikova, T., Schaefer, M., and Bovin, N. (2021) 40 years of glyco-polyacrylamide in glycobiology, Glycoconj. J., 38, 89-100, https://doi.org/10.1007/s10719-020-09965-5.
- Obukhova, P., Rieben, R., and Bovin, N. (2007) Normal human serum contains high levels of anti-Galα1-4GlcNAc antibodies, Xenotransplantation, 14, 627-635, https://doi.org/10.1111/j.1399-3089.2007.00436.x.
- Duhamel, R. C., and Whitehead, J. S. (1990) Prevention of nonspecific binding of avidin, 201-207, https://doi.org/ 10.1016/0076-6879(90)84275-L.
- Nyhlin, N., El-Salhy, M., Sandström, O., and Suhr, O. (1997) Evaluation of immunohistochemical staining of human duodenal endocrine cells after microwave antigen retrieval, Histochem. J., 29, 177-181, https://doi.org/ 10.1023/a:1026441623791.
- Kim, S. H., Jung, K. C., Shin, Y. K., Lee, K. M., Park, Y. S., Choi, Y. L., Oh, K. I., Kim, M. K., Chung, D. H., Son, H. G., and Park, S. H. (2002) The enhanced reactivity of endogenous biotin-like molecules by antigen retrieval procedures and signal amplification with tyramine, Histochem. J., 34, 97-103, https://doi.org/10.1023/a:1020954611464.
- Shone, C., Ferreira, J., Boyer, A., Cirino, N., Egan, C., Evans, E., Kools, J., and Sharma, S. (2006) The 5th international conference on basic and therapeutic aspects of Botulinum and tetanus neurotoxins. Workshop review: assays and detection, Neurotox. Res., 9, 205-216, https://doi.org/10.1007/BF03033940.
- Dundas, C. M., Demonte, D., and Park, S. (2013) Streptavidin–biotin technology: improvements and innovations in chemical and biological applications, Appl. Microbiol. Biotechnol., 97, 9343-9353, https://doi.org/10.1007/s00253-013-5232-z.
- Jain, A., and Cheng, K. (2017) The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis, J. Controll. Rel., 245, 27-40, https://doi.org/10.1016/j.jconrel.2016.11.016.
Дополнительные файлы
