Роль белка mod(mdg4)-67.2 во взаимодействиях между su(hw)-зависимыми комплексами и их рекрутировании на хроматин

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Белок Su(Hw) (Suppressor of Hairy-wing) принадлежит к классу белков, которые организуют архитектуру хромосом, определяют активность промоторов и участвуют в формировании границ/инсуляторов между регуляторными доменами. Этот белок содержит кластер из 12 цинковых пальцев типа С2Н2, часть из которых отвечает за связывание с консенсусным сайтом. Su(Hw) образует комплекс с белком Mod(mdg4)-67.2 и белком CP190 (Centrosomal protein 190kD), связывающимся со всеми известными инсуляторами дрозофилы. Для дальнейшего изучения функционирования Su(Hw)-зависимых комплексов мы использовали ранее описанную мутацию su(Hw)E8, которая инактивирует седьмой цинковый палец, в результате чего мутантный белок теряет способность связываться с консенсусным сайтом. В представленной работе показано, что белок Su(Hw)E8 продолжает напрямую взаимодействовать с белками CP190 и Mod(mdg4)-67.2. Через взаимодействие с Mod(mdg4)-67.2 белок Su(Hw)E8 может привлекаться в состав формирующихся на хроматине Su(Hw)-зависимых комплексов и усиливать их инсуляторную активность. Результаты работы демонстрируют, что не связанные с ДНК Su(Hw)-зависимые комплексы могут рекрутироваться на Su(Hw)-связывающие сайты через специфичные белок-белковые взаимодействия, которые стабилизируются Mod(mdg4)-67.2.

Полный текст

Доступ закрыт

Об авторах

Л. С. Мельникова

Институт биологии гена Российской академии наук (ИБГ РАН)

Автор, ответственный за переписку.
Email: lsm73@mail.ru
Россия, Москва

В. В. Молодина

Институт биологии гена Российской академии наук (ИБГ РАН)

Email: lsm73@mail.ru
Россия, Москва

П. Г. Георгиев

Институт биологии гена Российской академии наук (ИБГ РАН)

Email: lsm73@mail.ru
Россия, Москва

А. К. Головнин

Институт биологии гена Российской академии наук (ИБГ РАН)

Email: lsm73@mail.ru
Россия, Москва

Список литературы

  1. Cavalheiro, G. R., Pollex, T., and Furlong, E. E. (2021) To loop or not to loop: what is the role of TADs in enhancer function and gene regulation? Curr. Opin. Genet. Dev., 67, 119-129, https://doi.org/10.1016/j.gde.2020.12.015.
  2. Kim, J., and Dean, A. (2021) Enhancers navigate the three-dimensional genome to direct cell fate decisions, Curr. Opin. Struct. Biol., 71, 101-109, https://doi.org/10.1016/j.sbi.2021.06.005.
  3. Kyrchanova, O., Sokolov, V., and Georgiev, P. (2023) Mechanisms of interaction between enhancers and promoters in three Drosophila model systems, Int. J. Mol. Sci., 24, 2855, https://doi.org/10.3390/ijms24032855.
  4. Furlong, E. E. M., and Levine, M. (2018) Developmental enhancers and chromosome topology, Science, 361, 1341-1345, https://doi.org/10.1126/science.aau0320.
  5. Melnikova, L. S., Georgiev, P. G., and Golovnin, A. K. (2020) The functions and mechanisms of action of insulators in the genomes of higher eukaryotes, Acta Naturae, 12, 15-33, https://doi.org/10.32607/actanaturae.11144.
  6. Schoborg, T., and Labrador, M. (2014) Expanding the roles of chromatin insulators in nuclear architecture, chromatin organization and genome function, Cell. Mol. Life Sci., 71, 4089-4113, https://doi.org/10.1007/s00018-014-1672-6.
  7. Chen, D., and Lei, E. P. (2019) Function and regulation of chromatin insulators in dynamic genome organization, Curr. Opin. Cell Biol., 58, 61-68, https://doi.org/10.1016/j.ceb.2019.02.001.
  8. Kyrchanova, O., Maksimenko, O., Stakhov, V., Ivlieva, T., Parshikov, A., Studitsky, V. M., and Georgiev, P. (2013) Effective blocking of the white enhancer requires cooperation between two main mechanisms suggested for the insulator function, PLoS Genet., 9, e1003606, https://doi.org/10.1371/journal.pgen.1003606.
  9. Savitskaya, E., Melnikova, L., Kostuchenko, M., Kravchenko, E., Pomerantseva, E., Boikova, T., Chetverina, D., Parshikov, A., Zobacheva, P., Gracheva, E., et al. (2006) Study of long-distance functional interactions between Su(Hw) insulators that can regulate enhancer-promoter communication in Drosophila melanogaster, Mol. Cell Biol., 26, 754-761, https://doi.org/10.1128/MCB.26.3.754-761.2006.
  10. Maksimenko, O. G., Fursenko, D. V., Belova, E. V., and Georgiev, P. G. (2021) CTCF as an example of DNA-binding transcription factors containing clusters of C2H2-type zinc fingers, Acta Naturae, 13, 31-46, https://doi.org/10.32607/actanaturae.11206.
  11. Kyrchanova, O. V., Bylino, O. V., and Georgiev, P. G. (2022) Mechanisms of enhancer-promoter communication and chromosomal architecture in mammals and Drosophila, Front. Genet., 13, 1081088, https://doi.org/10.3389/fgene.2022.1081088.
  12. Roseman, R. R., Pirrotta, V., and Geyer, P. K. (1993) The su(Hw) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position-effects, EMBO J., 12, 435-442, https://doi.org/10.1002/j.1460-2075.1993.tb05675.x.
  13. Holdridge, C., and Dorsett, D. (1991) Repression of hsp70 heat shock gene transcription by the suppressor of hairy-wing protein of Drosophila melanogaster, Mol. Cell. Biol., 11, 1894-1900, https://doi.org/10.1128/mcb.11.4.1894-1900.1991.
  14. Geyer, P. K., and Corces, V. G. (1992) DNA position-specific repression of transcription by a Drosophila zinc finger protein, Genes Dev., 6, 1865-1873, https://doi.org/10.1101/gad.6.10.1865.
  15. Soshnev, A. A., Baxley, R. M., Manak, J. R., Tan, K., and Geyer, P. K. (2013) The insulator protein Suppressor of Hairy-wing is an essential transcriptional repressor in the Drosophila ovary, Development, 140, 3613-3623, https:// doi.org/10.1242/dev.094953.
  16. Melnikova, L., Elizar’ev, P., Erokhin, M., Molodina, V., Chetverina, D., Kostyuchenko, M., Georgiev, P., and Golovnin, A. (2019) The same domain of Su(Hw) is required for enhancer blocking and direct promoter repression, Sci. Rep., 9, 5314, https://doi.org/10.1038/s41598-019-41761-6.
  17. Baxley, R. M., Bullard, J. D., Klein, M. W., Fell, A. G., Morales-Rosado, J. A., Duan, T., and Geyer, P. K. (2017) Deciphering the DNA code for the function of the Drosophila polydactyl zinc finger protein suppressor of Hairy-wing, Nucleic Acids Res., 45, 4463-4478, https://doi.org/10.1093/nar/gkx040.
  18. Melnikova, L., Kostyuchenko, M., Molodina, V., Parshikov, A., Georgiev, P., and Golovnin, A. (2018) Interactions between BTB domain of CP190 and two adjacent regions in Su(Hw) are required for the insulator complex formation, Chromosoma, 127, 59-71, https://doi.org/10.1007/s00412-017-0645-6.
  19. Pai, C. Y., Lei, E. P., Ghosh, D., and Corces, V. G. (2004) The centrosomal protein CP190 is a component of the gypsy chromatin insulator, Mol. Cell, 16, 737-748, https://doi.org/10.1016/j.molcel.2004.11.004.
  20. Melnikova, L., Kostyuchenko, M., Molodina, V., Parshikov, A., Georgiev, P., and Golovnin, A. (2017) Multiple interactions are involved in a highly specific association of the Mod(mdg4)-67.2 isoform with the Su(Hw) sites in Drosophila, Open Biol., 7, 170150, https://doi.org/10.1098/rsob.170150.
  21. Ghosh, D., Gerasimova, T. I., and Corces, V. G. (2001) Interactions between the Su(Hw) and Mod(mdg4) proteins required for gypsy insulator function, EMBO J., 20, 2518-2527, https://doi.org/10.1093/emboj/20.10.2518.
  22. Gause, M., Morcillo, P., and Dorsett, D. (2001) Insulation of enhancer-promoter communication by a gypsy transposon insert in the Drosophila cut gene: cooperation between suppressor of hairy-wing and modifier of mdg4 proteins, Mol. Cell. Biol., 21, 4807-4817, https://doi.org/10.1128/MCB.21.14.4807-4817.2001.
  23. Bonchuk, A., Balagurov, K., and Georgiev, P. (2023) BTB domains: A structural view of evolution, multimerization, and protein-protein interactions, Bioessays, 45, e2200179, https://doi.org/10.1002/bies.202200179.
  24. Bonchuk, A., Denisov, S., Georgiev, P., and Maksimenko, O. (2011) Drosophila BTB/POZ domains of “ttk group” can form multimers and selectively interact with each other, J. Mol. Biol., 412, 423-436, https://doi.org/10.1016/ j.jmb.2011.07.052.
  25. Glenn, S. E., and Geyer, P. K. (2019) Investigation of the developmental requirements of Drosophila HP1 and insulator protein partner, HIPP1, G3 (Bethesda), 9, 345-357, https://doi.org/10.1534/g3.118.200705.
  26. Melnikova, L., Molodina, V., Erokhin, M., Georgiev, P., and Golovnin, A. (2019) HIPP1 stabilizes the interaction between CP190 and Su(Hw) in the Drosophila insulator complex, Sci. Rep., 9, 19102, https://doi.org/10.1038/s41598-019-55617-6.
  27. Stow, E. C., Simmons, J. R., An, R., Schoborg, T. A., Davenport, N. M., and Labrador, M. (2022) A Drosophila insulator interacting protein suppresses enhancer-blocking function and modulates replication timing, Gene, 819, 146208, https://doi.org/10.1016/j.gene.2022.146208.
  28. Kurshakova, M., Maksimenko, O., Golovnin, A., Pulina, M., Georgieva, S., Georgiev, P., and Krasnov, A. (2007) Evolutionarily conserved E(y)2/Sus1 protein is essential for the barrier activity of Su(Hw)-dependent insulators in Drosophila, Mol. Cell, 27, 332-338, https://doi.org/10.1016/j.molcel.2007.05.035.
  29. Matzat, L. H., Dale, R. K., Moshkovich, N., and Lei, E. P. (2012) Tissue-specific regulation of chromatin insulator function, PLoS Genet., 8, e1003069, https://doi.org/10.1371/journal.pgen.1003069.
  30. King, M. R., Matzat, L. H., Dale, R. K., Lim, S. J., and Lei, E. P. (2014) The RNA-binding protein Rumpelstiltskin antagonizes gypsy chromatin insulator function in a tissue-specific manner, J. Cell. Sci., 127, 2956-2966, https:// doi.org/10.1242/jcs.151126.
  31. Schoborg, T., Rickels, R., Barrios, J., and Labrador, M. (2013) Chromatin insulator bodies are nuclear structures that form in response to osmotic stress and cell death, J. Cell Biol., 202, 261-276, https://doi.org/10.1083/jcb.201304181.
  32. Golovnin, A., Melnikova, L., Volkov, I., Kostuchenko, M., Galkin, A. V., and Georgiev, P. (2008) “Insulator bodies” are aggregates of proteins but not of insulators, EMBO Rep., 9, 440-445, https://doi.org/10.1038/embor.2008.32.
  33. Golovnin, A., Volkov, I., and Georgiev, P. (2012) SUMO conjugation is required for the assembly of Drosophila Su(Hw) and Mod(mdg4) into insulator bodies that facilitate insulator complex formation, J. Cell Sci., 125, 2064-2074, https://doi.org/10.1242/jcs.100172.
  34. Harrison, D. A., Gdula, D. A., Coyne, R. S., and Corces, V. G. (1993) A leucine zipper domain of the suppressor of Hairy-wing protein mediates its repressive effect on enhancer function, Genes Dev., 7, 1966-1978, https://doi.org/ 10.1101/gad.7.10.1966.
  35. Melnikova, L., Kostyuchenko, M., Parshikov, A., Georgiev, P., and Golovnin, A. (2018) Role of Su(Hw) zinc finger 10 and interaction with CP190 and Mod(mdg4) proteins in recruiting the Su(Hw) complex to chromatin sites in Drosophila, PLoS One, 13, e0193497, https://doi.org/10.1371/journal.pone.0193497.
  36. Georgiev, P., and Kozycina, M. (1996) Interaction between mutations in the suppressor of Hairy wing and modifier of mdg4 genes of Drosophila melanogaster affecting the phenotype of gypsy-induced mutations, Genetics, 142, 425-436, https://doi.org/10.1093/genetics/142.2.425.
  37. Murawska, M., and Brehm, A. (2012) Immunostaining of Drosophila polytene chromosomes to investigate recruitment of chromatin-binding proteins, Methods Mol. Biol., 809, 267-277, https://doi.org/10.1007/978-1-61779-376-9_18.
  38. Geyer, P. K., and Corces, V. G. (1987) Separate regulatory elements are responsible for the complex pattern of tissue-specific and developmental transcription of the yellow locus in Drosophila melanogaster, Genes Dev., 1, 996-1004, https://doi.org/10.1101/gad.1.9.996.
  39. Geyer, P. K., Spana, C., and Corces, V. G. (1986) On the molecular mechanism of gypsy-induced mutations at the yellow locus of Drosophila melanogaster, EMBO J., 5, 2657-2662, https://doi.org/10.1002/j.1460-2075.1986.tb04548.x.
  40. Jack, J., Dorsett, D., Delotto, Y., and Liu, S. (1991) Expression of the cut locus in the Drosophila wing margin is required for cell type specification and is regulated by a distant enhancer, Development, 113, 735-747, https://doi.org/ 10.1242/dev.113.3.735.
  41. Parnell, T. J., Kuhn, E. J., Gilmore, B. L., Helou, C., Wold, M. S., and Geyer, P. K. (2006) Identification of genomic sites that bind the Drosophila suppressor of Hairy-wing insulator protein, Mol. Cell. Biol., 26, 5983-5993, https:// doi.org/10.1128/MCB.00698-06.
  42. Kuhn-Parnell, E. J., Helou, C., Marion, D. J., Gilmore, B. L., Parnell, T. J., Wold, M. S., and Geyer, P. K. (2008) Investigation of the properties of non-gypsy suppressor of hairy-wing-binding sites, Genetics, 179, 1263-1273, https:// doi.org/10.1534/genetics.108.087254.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Производные белка Su(Hw), использованные в работе. a – Схематичное изображение полноразмерного белка Su(Hw). Обозначения доменов: CID – домен, взаимодействующий с СР190; ZF – цинковые пальцы; LZ – лейциновая молния. На схеме показаны районы взаимодействия с белками Mod(mdg4)-67.2 (Mod-67.2) и СР190, которые изображены в виде овалов. Вертикальная стрелка указывает на мутацию su(Hw)E8. Скобкой под схемой указан район белка, к которому были получены антитела. Цифрами обозначены аминокислотные остатки, ограничивающие домены и производные формы. Слева указаны названия производных, размер производных обозначен отрезками, пунктирные линии обозначают внутренние делеции, звёздочкой обозначена мутация su(Hw)E8. Справа от схем приведены результаты, полученные в ДДС. «+» – наличие взаимодействия, «–» – отсутствие взаимодействия. б – Делеционные производные, использованные в генетических экспериментах и в иммуноокрашивании политенных хромосом

Скачать (471KB)
3. Рис. 2. Влияние белка Su(Hw)E8 на gypsy-зависимую инсуляцию. а – Схематичное изображение аллелей y2 и ct6. Экзоны генов yellow и cut изображены в виде прямоугольников. Сайты инициации транскрипции генов указаны стрелками. Ретротранспозон gypsy изображён в виде треугольника. Прямоугольники на его концах обозначают длинные концевые повторы (ДКП), ориентация которых указана стрелками. Обозначения: Su(Hw) – инсулятор Su(Hw); Эн-К – энхансер крыльев, Эн-Т – энхансер тела; Эн-Щ – энхансер щетинок; Эн-Кп – энхансер крыловой пластины. б – Влияние производных белка Su(Hw) на активность инсулятора gypsy в аллелях y2 и ct6 на фоне мутаций su(Hw)v/su(Hw)2 (v/2) и su(Hw)v/su(Hw)E8 (v/E8). Названия линий, использованных для фенотипического анализа, указаны в правой колонке: wt – y2ct6, Su(Hw)+ – трансген экспрессировал полноразмерный белок. Схемы и названия остальных производных приведены на рис. 1. Цифры в колонке y2 показывают уровень экспрессии гена yellow в кутикуле тела и крыльев. На фотографиях показаны изменения крылового фенотипа гена cut на различных мутантных фонах

4. Рис. 3. Связывание белка Su(Hw)E8 с политенными хромосомами. Иммуноокрашивание политенных хромосом слюнных желёз личинок третьего возраста из линий y2ct6 (wt), y2ct6 su(Hw)v/su(Hw)2 (v/2), y2ct6;su(Hw)v/su(Hw)E8 (v/E8), y2ct6;su(Hw)vmod(mdg4)u1/su(Hw)E8mod(mdg4)u1 (v-m/E8-m) и из тех же линий, экспрессирующих белок Su(Hw)ΔN-FLAG или Su(Hw)+-FLAG. В экспериментах использовали антитела к эпитопу FLAG (αFLAG) и к N-концевому домену белка Su(Hw) (αSu(Hw)-N). Стрелки указывают на инсерцию gypsy на конце хромосомы Х

5. Рис. 4. Связывание белка Su(Hw)E8 с SBS. a – Тестирование связывания белка Su(Hw) в линиях y2ct6 с помощью антител к N-концевому домену Su(Hw). б – Тестирование связывания белка Su(Hw)ΔN в линиях y2ct6;Su(Hw)ΔN-FLAG/Su(Hw)ΔN-FLAG с помощью антител к эпитопу FLAG. в – Тестирование связывания белка Su(Hw)E8 в линиях y2ct6;Su(Hw)ΔN-FLAG/Su(Hw)ΔN-FLAG с помощью антител к N-концевому домену Su(Hw). Кодирующую область гена ras64B (ras) использовали как контроль, не содержащий сайты связывания белкa Su(Hw). Процент обогащения иммунопреципитированной ДНК (ось Y) рассчитывали относительно количества загруженной ДНК. Внизу (ось Х) указаны названия выбранных Su(Hw)-зависимых cайтов. Показано стандартное отклонение для трёх независимых биологических повторностей. Уровни значимости (критерий Стьюдента) p < 0,05. Обозначения: wt – дикий тип; v-m/2-m – сочетание мутаций su(Hw)vmod(mdg4)u1/su(Hw)2mod(mdg4)u1; IgG – иммуноглобулины. Остальные обозначения – как на рис. 2 и 3

Скачать (903KB)
6. Рис. 5. Модель рекрутирования Su(Hw)-зависимых комплексов на SBS в процессе репликации ДНК

Скачать (686KB)

© Российская академия наук, 2024