Исследование механизма генерации мембранного потенциала гем-медными дыхательными оксидазами в режиме реального времени
- Авторы: Силецкий С.А1
-
Учреждения:
- Научно-исследовательский институт физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова
- Выпуск: Том 88, № 10 (2023)
- Страницы: 1829-1846
- Раздел: Статьи
- URL: https://ter-arkhiv.ru/0320-9725/article/view/665532
- DOI: https://doi.org/10.31857/S0320972523100081
- EDN: https://elibrary.ru/OTDXSA
- ID: 665532
Цитировать
Аннотация
Гем-медные дыхательные оксидазы являются высокоэффективными молекулярными машинами. Эти мембранные ферменты катализируют конечный этап клеточного дыхания эукариот и многих прокариот: перенос электронов от цитохромов или хинолов к молекулярному кислороду и восстановление O2 до воды. Высвобождаемая в этой окислительно-восстановительной реакции свободная энергия преобразуется гем-медными дыхательными оксидазами в трансмембранный градиент электрохимического потенциала ионов водорода (ΔµH+). Гем-медные дыхательные оксидазы обладают уникальным механизмом генерации ΔµH+ - редокс-сопряженной протонной помпой. Использование в исследовании гем-медных оксидаз комбинации прямого электрометрического метода измерения кинетики генерации мембранного потенциала с подходами и методами предстационарной кинетики и направленного мутагенеза позволяет получать уникальную информацию о перемещении протонов внутри белка в режиме реального времени. В обзоре суммированы результаты применения разрешенной во времени электрометрии к расшифровке механизмов работы этих важнейших биоэнергетических ферментов.
Об авторах
С. А Силецкий
Научно-исследовательский институт физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова
Email: siletsky@belozersky.msu.ru
119991 Москва, Россия
Список литературы
- Anraku, Y. (1988) Bacterial electron transport chains, Ann. Rev. Biochem., 57, 101-132, doi: 10.1146/annurev.bi.57.070188.000533.
- Garcia-Horsman, J. A., Barquera, B., Rumbley, J., Ma, J., and Gennis, R. B. (1994) The superfamily of heme-copper respiratory oxidases, J. Bacteriol., 176, 5587-5600, doi: 10.1128/jb.176.18.5587-5600.1994.
- Babcock, G. T., and Wikström, M. (1992) Oxygen activation and the conservation of energy in cell respiration, Nature, 356, 301-309, doi: 10.1038/356301a0.
- Ferguson-Miller, S., and Babcock, G. T. (1996) Heme/copper terminal oxidases, Chem. Rev., 7, 2889-2907, doi: 10.1021/cr950051s.
- Hemp, J., and Gennis, R. B. (2008) Diversity of the heme-copper superfamily in archaea: insights from genomics and structural modeling, Results Probl. Cell Differ., 45, 1-31, doi: 10.1007/400_2007_046.
- Rich, P. R. (2017) Mitochondrial cytochrome c oxidase: catalysis, coupling and controversies, Biochem. Soc. Trans., 45, 813-829, doi: 10.1042/BST20160139.
- Siletsky, S. A., and Borisov, V. B. (2021) Proton pumping and non-pumping terminal respiratory oxidases: active sites intermediates of these molecular machines and their derivatives, Int. J. Mol. Sci., 22, 10852, doi: 10.3390/ijms221910852.
- Pereira, M. M., Santana, M., and Teixeira, M. (2001) A novel scenario for the evolution of haem-copper oxygen reductases, Biochim. Biophys. Acta, 1505, 185-208, doi: 10.1016/S0005-2728(01)00169-4.
- Yoshikawa, S., and Shimada, A. (2015) Reaction mechanism of cytochrome c oxidase, Chem. Rev., 115, 1936-1989, doi: 10.1021/cr500266a.
- Fee, J. A., Yoshida, T., Surerus, K. K., and Mather, M. W. (1993) Cytochrome caa3 from the thermophilic bacterium Thermus thermophilus: a member of the heme-copper oxidase superfamily, J. Bioenerg. Biomembr., 25, 103-114, doi: 10.1007/BF00762852.
- Siletsky, S. A., Belevich, I., Soulimane, T., Verkhovsky, M. I., and Wikström, M. (2013) The fifth electron in the fully reduced caa3 from Thermus thermophilus is competent in proton pumping, Biochim. Biophys. Acta, 1827, 1-9, doi: 10.1016/j.bbabio.2012.09.013.
- Wikström, M., Krab, K., and Sharma, V. (2018) Oxygen activation and energy conservation by cytochrome c oxidase, Chem. Rev., 118, 2469-2490, doi: 10.1021/acs.chemrev.7b00664.
- Forte, E., Borisov, V. B., Siletsky, S. A., Petrosino, M., and Giuffre, A. (2019) In the respiratory chain of Escherichia coli cytochromes bd-I and bd-II are more sensitive to carbon monoxide inhibition than cytochrome bo3, Biochim. Biophys. Acta Bioenergetics, 1860, 148088, doi: 10.1016/j.bbabio.2019.148088.
- Bjorck, M. L., Vilhjalmsdottir, J., Hartley, A. M., Meunier, B., Nasvik Ojemyr, L., Marechal, A., and Brzezinski, P. (2019) Proton-transfer pathways in the mitochondrial S. cerevisiae cytochrome c oxidase, Sci. Rep., 9, 20207, doi: 10.1038/s41598-019-56648-9.
- Siletsky, S. A., and Gennis, R. B. (2021) Time-resolved electrometric study of the F → O transition in cytochrome c oxidase. The effect of Zn2+ ions on the positive side of the membrane, Biochemistry (Moscow), 86, 105-122, doi: 10.1134/S0006297921010107.
- Marechal, A., Xu, J. Y., Genko, N., Hartley, A. M., Haraux, F., Meunier, B., and Rich, P. R. (2020) A common coupling mechanism for A-type heme-copper oxidases from bacteria to mitochondria, Proc. Natl. Acad. Sci. USA, 117, 9349-9355, doi: 10.1073/pnas.2001572117.
- Siletsky, S. A. (2013) Steps of the coupled charge translocation in the catalytic cycle of cytochrome c oxidase, Front. Biosci. (Landmark Ed), 18, 36-57, doi: 10.2741/4086.
- Fee, J. A., Sanders, D., Slutter, C. E., Doan, P. E., Aasa, R., Karpefors, M., and Vänngård, T. (1995) Multi-frequency epr evidence for a binuclear CuA center in cytochrome c oxidase: studies with a 63Cu- and 65Cu-enriched, soluble domain of the cytochrome ba3, subunit II from Thermus Thermophilus, Biochem. Biophys. Res. Commun., 212, 77-83, doi: 10.1006/bbrc.1995.1938.
- Soulimane, T., Buse, G., Bourenkov, G. B., Bartunik, H. D., Huber, R., and Than, M. E. (2000) Structure and mechanism of the aberrant ba3-cytochrome c oxidase from Thermus thermophilus, EMBO J., 19, 1766-1776, doi: 10.1093/emboj/19.8.1766.
- Pitcher, R. S., and Watmough, N. J. (2004) The bacterial cytochrome cbb3 oxidases, Biochim. Biophys. Acta, 1655, 388-399, doi: 10.1016/j.bbabio.2003.09.017.
- Buschmann, S., Warkentin, E., Xie, H., Langer, J. D., Ermler, U., and Michel, H. (2010) The structure of cbb3 cytochrome oxidase provides insights into proton pumping, Science, 329, 327-330, doi: 10.1126/science.1187303.
- Mitchell, P. (1968) Chemiosmotic coupling and energy transduction, Glynn Research Ltd., Bodmin.
- Wikström, M. (1977) Proton pump coupled to cytochrome c oxidase in mitochondria, Nature, 266, 271-273, doi: 10.1038/266271a0.
- Wikström, M. (2004) Cytochrome c oxidase: 25 years of the elusive proton pump, Biochim. Biophys. Acta, 1655, 241-247, doi: 10.1016/j.bbabio.2003.07.013.
- Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., Nemecek, I. B., Ostroumov, S. A., Semenov, A., and Skulachev, V. P. (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature, 249, 321-324, doi: 10.1038/249321a0.
- Drachev, L. A., Kaulen, A. D., Khitrina, L. V., and Skulachev, V. P. (1981) Fast stages of photoelectric processes in biological membranes. I. Bacteriorhodopsin, Eur. J. Biochem., 117, 461-470, doi: 10.1111/j.1432-1033.1981.tb06361.x.
- Belevich, I., Gorbikova, E., Belevich, N. P., Rauhamaki, V., Wikström, M., and Verkhovsky, M. I. (2010) Initiation of the proton pump of cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 107, 18469-18474, doi: 10.1073/pnas.1010974107.
- Siletsky, S. A., and Konstantinov, A. A. (2012) Cytochrome c oxidase: charge translocation coupled to single-electron partial steps of the catalytic cycle, Biochim. Biophys. Acta, 1817, 476-488, doi: 10.1016/j.bbabio.2011.08.003.
- Siletsky, S. A., Soulimane, T., Belevich, I., Gennis, R. B., and Wikström, M. (2021) Specific inhibition of proton pumping by the T315V mutation in the K channel of cytochrome ba3 from Thermus thermophilus, Biochim. Biophys. Acta Bioenergetics, 1862, 148450, doi: 10.1016/j.bbabio.2021.148450.
- Siletsky, S. A., Pawate, A. S., Weiss, K., Gennis, R. B., and Konstantinov, A. A. (2004) Transmembrane charge separation during the ferryl-oxo → oxidized transition in a non-pumping mutant of cytochrome c oxidase, J. Biol. Chem., 279, 52558-52565, doi: 10.1074/jbc.M407549200.
- Siletsky, S. A., Zhu, J., Gennis, R. B., and Konstantinov, A. A. (2010) Partial steps of charge translocation in the nonpumping N139L mutant of Rhodobacter sphaeroides cytochrome c oxidase with a blocked D-channel, Biochemistry, 49, 3060-3073, doi: 10.1021/bi901719e.
- Tsukihara, T., Aoyama, H., Yamashita, E., Takashi, T., Yamaguichi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å, Science, 272, 1136-1144, doi: 10.1126/science.272.5265.1136.
- Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Inoue, N., Yao, M., Fei, M. J., Libeu, C. P., Mizushima, T., Yamaguchi, H., Tomizaki, T., and Tsukihara, T. (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase, Science, 280, 1723-1729, doi: 10.1126/science.280.5370.1723.
- Tsukihara, T., Shimokata, K., Katayama, Y., Shimada, H., Muramoto, K., Aoyama, H., Mochizuki, M., Shinzawa-Itoh, K., Yamashita, E., Yao, M., Ishimura, Y., and Yoshikawa, S. (2003) The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process, Proc. Natl. Acad. Sci. USA, 100, 15304-15309, doi: 10.1073/pnas.2635097100.
- Muramoto, K., Hirata, K., Shinzawa-Itoh, K., Yoko-o, S., Yamashita, E., Aoyama, H., Tsukihara, T., and Yoshikawa, S. (2007) A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 104, 7881-7886, doi: 10.1073/pnas.0610031104.
- Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature, 376, 660-669, doi: 10.1038/376660a0.
- Ostermeier, C., Iwata, S., Ludwig, B., and Michel, H. (1995) FV fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase, Nat. Struct. Biol., 2, 842, doi: 10.1038/nsb1095-842.
- Koepke, J., Olkhova, E., Angerer, H., Muller, H., Peng, G., and Michel, H. (2009) High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: New insights into the active site and the proton transfer pathways, Biochim. Biophys. Acta, 1787, 635-645, doi: 10.1016/j.bbabio.2009.04.003.
- Svensson-Ek, M., Abramson, J., Larsson, G., Tornroth, S., Brzezinski, P., and Iwata, S. (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides, J. Mol. Biol., 321, 329-339, doi: 10.1016/S0022-2836(02)00619-8.
- Qin, L., Liu, J., Mills, D. A., Proshlyakov, D. A., Hiser, C., and Ferguson-Miller, S. (2009) Redox dependent conformational changes in cytochrome c oxidase suggest a gating mechanism for proton uptake, Biochemistry, 48, 5121-5130, doi: 10.1021/bi9001387.
- Abramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., Laakkonen, L., Puuustinen, A., Iwata, S., and Wikström, M. (2000) The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site, Nat. Struct. Biol., 7, 910-917, doi: 10.1038/82824.
- Noor, M. R., and Soulimane, T. (2013) Structure of caa(3) cytochrome c oxidase - a nature-made enzyme-substrate complex, Biol. Chem., 394, 579-591, doi: 10.1515/hsz-2012-0343.
- Luna, V. M., Chen, Y., Fee, J. A., and Stout, C. D. (2008) Crystallographic studies of Xe and Kr binding within the large internal cavity of cytochrome ba3 from Thermus thermophilus: structural analysis and role of oxygen transport channels in the heme-Cu oxidases, Biochemistry, 47, 4657-4665, doi: 10.1021/bi800045y.
- Fetter, J. R., Qian, J., Shapleigh, J., Thomas, J. W., Garcia-Horsman, A., Schmidt, E., Hosler, J., Babcock, G. T., Gennis, R. B., and Ferguson-Miller, S. (1995) Possible proton relay pathways in cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 92, 1604-1608, doi: 10.1073/pnas.92.5.1604.
- Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A., and Gennis, R. B. (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time resolved electrogenic intraprotein proton transfer, Proc. Natl. Acad. Sci. USA, 94, 9085-9090, doi: 10.1073/pnas.94.17.9085.
- Gennis, R. B. (1998) Multiple proton-conducting pathways in cytochrome oxidase and a proposed role for the active-site tyrosine, Biochim. Biophys. Acta, 1365, 241-248, doi: 10.1016/S0005-2728(98)00075-9.
- Branden, M., Tomson, F., Gennis, R. B., and Brzezinski, P. (2002) The entry point of the K-proton-transfer pathway in cytochrome c oxidase, Biochemistry, 41, 10794-10798, doi: 10.1021/bi026093+.
- Hofacker, I., and Schulten, K. (1998) Proteins: Structure, Function, and Genetics, 30, 100-107, doi: 10.1002/(SICI)1097-0134(199801)30:1<100::AID-PROT9>3.0.CO;2-S.
- Popovic, D. M., and Stuchebrukhov, A. A. (2005) Proton exit channels in bovine cytochrome c oxidase, J. Phys. Chem. B, 109, 1999-2006, doi: 10.1021/jp0464371.
- Riistama, S., Puustinen, A., Verkhovsky, M. I., Morgan, J. E., and Wikström, M. (2000) Binding of O2 and its reduction are both retarded by replacement of valine 279 by isoleucine in cytochrome c oxidase from Paracoccus denitrificans, Biochemistry, 39, 6365-6372, doi: 10.1021/bi000123w.
- Salomonsson, L., Lee, A., Gennis, R. B., and Brzezinski, P. (2004) A single-amino-acid lid renders a gas-tight compartment within a membrane-bound transporter, Proc. Natl. Acad. Sci. USA, 101, 11617-11621, doi: 10.1073/pnas.0402242101.
- Schmidt, B., McCracken, J., and Ferguson-Miller, S. (2003) A discrete water exit pathway in the membrane protein cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 100, 15539-15542, doi: 10.1073/pnas.2633243100.
- Verkhovsky, M. I., Jasaitis, A., Verkhovskaya, M. L., Morgan, L., and Wikström, M. (1999) Proton translocation by cytochrome c oxidase, Nature, 400, 480-483, doi: 10.1038/22813.
- Chance, B., Saronio, C., and Leigh, J. S., Jr. (1975) Functional intermediates in the reaction of membrane-bound cytochrome oxidase with oxygen, J. Biol. Chem., 250, 9226-9237, doi: 10.1016/S0021-9258(19)40634-0.
- Hill, B. C., and Greenwood, C. (1983) Spectroscopic evidence for the participation of compound A (Fea32+-O2) in the reaction of mixed-valence cytochrome c oxidase with oxygen at room temperature, Biochem. J., 215, 659-667, doi: 10.1042/bj2150659.
- Muramoto, K., Ohta, K., Shinzawa-Itoh, K., Kanda, K., Taniguchi, M., Nabekura, H., Yamashita, E., Tsukihara, T., and Yoshikawa, S. (2010) Bovine cytochrome c oxidase structures enable O2 reduction with minimization of reactive oxygens and provide a proton-pumping gate, Proc. Natl. Acad. Sci. USA, 107, 7740-7745, doi: 10.1073/pnas.0910410107.
- Kitagawa, T., and Ogura, T. (1997) Oxygen activation mechanism at the binuclear site of heme-copper oxidase superfamily as revealed by time-resolved resonance Raman spectroscopy, in Progress in Inorganic Chemistry (Karlin, K. D., ed) Wiley & Sons, pp. 431-479, doi: 10.1002/9780470166468.ch6.
- Proshlyakov, D. A., Pressler, M. A., and Babcock, G. T. (1998) Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase, Proc. Natl. Acad.Sci. USA, 95, 8020-8025, doi: 10.1073/pnas.95.14.8020.
- Proshlyakov, D. A., Pressler, M. A., DeMaso, C., Leykam, J. F., DeWitt, D. L., and Babcock, G. T. (2000) Oxygen activation and reduction in respiration: involvement of redox-active tyrosine 244, Science, 290, 1588-1591, doi: 10.1126/science.290.5496.1588.
- Buse, G., Soulimane, T., Dewor, M., Meyer, H. E., and Bloggel, M. (1999) Evidence for a copper coordinated histidine-tyrosine crosslink in the active site of cytochrome oxidase, Protein Sci., 8, 985-990, doi: 10.1110/ps.8.5.985.
- Rauhamaki, V., Baumann, M., Soliymani, R., Puustinen, A., and Wikström, M. (2006) Identification of histidin-tyrosin cross-link in the active site of the cbb3-type cytochrome c oxidase from Rhodobacter sphaeroides, Proc. Natl. Acad. Sci. USA, 103, 16135-16140, doi: 10.1073/pnas.0606254103.
- Babcock, G. T. (1999) How oxygen is activated and reduced in respiration, Proc. Natl. Acad. Sci. USA, 96, 12971-12973, doi: 10.1073/pnas.96.23.12971.
- Siletsky, S., Kaulen, A. D., and Konstantinov, A. A. (1999) Resolution of electrogenic steps coupled to conversion of cytochrome c oxidase from the peroxy to the ferryl-oxo state, Biochemistry, 38, 4853-4861, doi: 10.1021/bi982614a.
- Sharma, V., Karlin, K. D., and Wikstrom, M. (2013) Computational study of the activated OH state in the catalytic mechanism of cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 110, 16844-16849, doi: 10.1073/pnas.1220379110.
- Siletsky, S. A., Belevich, I., Wikström, M., Soulimane, T., and Verkhovsky, M. I. (2009) Time-resolved OH → EH transition of the aberrant ba3 oxidase from Thermus thermophilus, Biochim. Biophys. Acta, 1787, 201-205, doi: 10.1016/j.bbabio.2008.12.020.
- Siletsky, S. A., Belevich, I., Belevich, N. P., Soulimane, T., and Wikström, M. (2017) Time-resolved generation of membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and OH states, Biochim. Biophys. Acta, 1858, 915-926, doi: 10.1016/j.bbabio.2017.08.007.
- Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Balashov, S. P., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Petrovskaya, L. E. (2016) Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum, Biochim. Biophys. Acta, 1857, 1741-1750, doi: 10.1016/j.bbabio.2016.08.004.
- Kaulen, A. D. (2000) Electrogenic processes and protein conformational changes accompanying the bacteriorhodopsin photocycle, Biochim. Biophys. Acta, 1460, 204-219, doi: 10.1016/S0005-2728(00)00140-7.
- Gibson, Q. H., and Greenwood, C. (1963) Reactions of cytochrome oxidase with oxygen and carbon monoxide, Biochem. J., 86, 541-554, doi: 10.1042/bj0860541.
- Nilsson, T. (1992) Photoinduced electron transfer from tris(2,2′-bipyridyl)ruthenium to cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 89, 6497-6501, doi: 10.1073/pnas.89.14.6497.
- Belevich, I., and Verkhovsky, M. I. (2008) Molecular mechanism of proton translocation by cytochrome c oxidase, Antioxid. Redox Signal., 10, 1-29, doi: 10.1089/ars.2007.1705.
- Kaila, V. R., Verkhovsky, M. I., and Wikström, M. (2010) Proton-coupled electron transfer in cytochrome oxidase, Chem. Rev., 110, 7062-7081, doi: 10.1021/cr1002003.
- Zaslavsky, D., Kaulen, A., Smirnova, I. A., Vygodina, T. V., and Konstantinov, A. A. (1993) Flash-induced membrane potential generation by cytochrome c oxidase, FEBS Lett., 336, 389-393, doi: 10.1016/0014-5793(93)80843-J.
- Zaslavsky, D. L., Smirnova, I. A., Siletsky, S. A., Kaulen, A. D., Millett, F., and Konstantinov, A. A. (1995) Rapid kinetics of membrane potential generation by cytochrome c oxidase with the photoactive Ru(II)-tris-bipyridyl derivative of cytochrome c as electron donor, FEBS Lett., 359, 27-30, doi: 10.1016/0014-5793(94)01443-5.
- Siletsky, S. A., Kaulen, A. D., and Konstantinov, A. A. (1997) Electrogenic events associated with peroxy- to ferryl-oxo state transition in cytochrome c oxidase, Eur. J. Biophys., 26, 98.
- Verkhovsky, M. I., Tuukkanen, A., Backgren, C., Puustinen, A., and Wikström, M. (2001) Charge translocation coupled to electron injection into oxidized cytochrome c oxidase from Paracoccus denitrificans, Biochemistry, 40, 7077-7083, doi: 10.1021/bi010030u.
- Verkhovsky, M. I., Morgan, J. E., Verkhovskaya, M., and Wikström, M. (1997) Translocation of electrical charge during a single turnover of cytochrome c oxidase, Biochim. Biophys. Acta, 1318, 6-10, doi: 10.1016/S0005-2728(96)00147-8.
- Hinkle, P., and Mitchell, P. (1970) Effect of membrane potential on the redox poise between cytochrome a and cytochrome c in rat liver mitochondria, J. Bioenerg., 1, 45-60, doi: 10.1007/BF01516088.
- Wikström, M. (1989) Identification of the electron transfers in cytochrome oxidase that are coupled to proton-pumping, Nature, 338, 776-778, doi: 10.1038/338776a0.
- Wikström, M., Krab, K., and Saraste, M. (1981) Cytochrome Oxidase - A Synthesis, Academic Press, New York.
- Siletsky, S. A., Kaulen, A. D., Mitchell, D., Gennis, R. B., and Konstantinov, A. A. (1996) Resolution of two proton conduction pathways in cytochrome c oxidase, EBEC Short Rep., 9, 90.
- Lepp, H., Svahn, E., Faxen, K., and Brzezinski, P. (2008) Charge transfer in the K proton pathway linked to electron transfer to the catalytic site in cytochrome c oxidase, Biochemistry, 47, 4929-4935, doi: 10.1021/bi7024707.
- Ruitenberg, M., Kannt, A., Bamberg, E., Ludwig, B., Michel, H., and Fendler, K. (2000) Single-electron reduction of the oxidized state is coupled to proton uptake via the K pathway in Paracoccus denitrificans cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 97, 4632-4636, doi: 10.1073/pnas.080079097.
- Ruitenberg, M., Kannt, A., Bamberg, E., Fendler, K., and Michel, H. (2002) Reduction of cytochrome c oxidase by a second electron leads to proton translocation, Nature, 417, 99-102, doi: 10.1038/417099a.
- Bloch, D., Belevich, I., Jasaitis, A., Ribacka, C., Puustinen, A., Verkhovsky, M. I., and Wikström, M. (2004) The catalytic cycle of cytochrome c oxidase is not the sum of its two halves, Proc. Natl. Acad. Sci. USA, 101, 529-533, doi: 10.1073/pnas.0306036101.
- Belevich, I., Bloch, D. A., Wikström, M., and Verkhovsky, M. I. (2007) Exploring the proton pump mechanism of cytochrome c oxidase in real time, Proc. Natl. Acad. Sci. USA, 104, 2685-2690, doi: 10.1073/pnas.0608794104.
- Pawate, A. S., Morgan, J., Namslauer, A., Mills, D., Brzezinski, P., Ferguson-Miller, S., and Gennis, R. B. (2002) A mutation in subunit I of cytochrome oxidase from Rhodobacter sphaeroides results in an increase in steady-state activity but completely eliminates proton pumping, Biochemistry, 41, 13417-13423, doi: 10.1021/bi026582+.
- Pfitzner, U., Hoffmeier, K., Harrenga, A., Kannt, A., Michel, H., Bamberg, E., Richter, O.-M. H., and Ludwig, B. (2000) Tracing the D-pathway in reconstituted site-directed mutants of cytochrome c oxidase from Paracoccus denitrificans, Biochemistry, 39, 6756-6762, doi: 10.1021/bi992235x.
- Ribacka, C., Verkhovsky, M. I., Belevich, I., Bloch, D. A., Puustinen, A., and Wikström, M. (2005) An elementary reaction step of the proton pump is revealed by mutation of tryptophan-164 to phenylalanine in cytochrome c oxidase from Paracoccus denitrificans, Biochemistry, 44, 16502-16512, doi: 10.1021/bi0511336.
- Faxen, K., Gilderson, G., Adelroth, P., and Brzezinski, P. (2005) A mechanistic principle for proton pumping by cytochrome c oxidase, Nature, 437, 286-289, doi: 10.1038/nature03921.
- Brand, S. E., Rajagukguk, S., Ganesan, K., Geren, L., Fabian, M., Han, D., Gennis, R. B., Durham, B., and Millett, F. (2007) A new ruthenium complex to study single-electron reduction of the pulsed OH state of detergent-solubilized cytochrome oxidase, Biochemistry, 46, 14610-14618, doi: 10.1021/bi701424d.
- Siletsky, S. A., Belevich, I., Belevich, N. P., Soulimane, T., and Verkhovsky, M. I. (2011) Time-resolved single-turnover of caa3 oxidase from Thermus thermophilus. Fifth electron of the fully reduced enzyme converts OH into EH state, Biochim. Biophys. Acta, 1807, 1162-1169, doi: 10.1016/j.bbabio.2011.05.006.
- Thomas, J. W., Puustinen, A., Alben, J. O., Gennis, R. B., and Wikström, M. (1993) Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity, Biochemistry, 32, 10923-10928, doi: 10.1021/bi00091a048.
- Garcia-Horsman, J. A., Puustinen, A., Gennis, R. B., and Wikström, M. (1995) Proton transfer in cytochrome bo3 ubiquinol oxidase of Escherichia coli: second site mutations in subunit I that restore proton pumping in the decoupled mutant Asp135Asn, Biochemistry, 34, 4428-4433, doi: 10.1021/bi00013a035.
- Siletsky, S. A., Borisov, V. B., and Mamedov, M. D. (2017) Photosystem II and terminal respiratory oxidases: molecular machines operating in opposite directions, Front. Biosci. (Landmark Ed), 22, 1379-1426, doi: 10.2741/4550.
- Shimokata, K., Katayama, Y., Murayama, H., Suematsu, M., Tsukihara, T., Muramoto, K., Aoyama, H., Yoshikawa, S., and Shimada, H. (2007) The proton pumping pathway of bovine heart cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 104, 4200-4205, doi: 10.1073/pnas.0611627104.
- Yoshikawa, S., Shimada, A., and Shinzawa-Itoh, K. (2015) Respiratory conservation of energy with dioxygen: cytochrome c oxidase, Met. Ions Life Sci., 15, 89-130, doi: 10.1007/978-3-319-12415-5_4.
- Capitanio, N., Palese, L. L., Capitanio, G., Martino, P. L., Richter, O. M., Ludwig, B., and Papa, S. (2012) Allosteric interactions and proton conducting pathways in proton pumping aa(3) oxidases: heme a as a key coupling element, Biochim. Biophys. Acta, 1817, 558-566, doi: 10.1016/j.bbabio.2011.11.003.
- Rich, P. R., and Marechal, A. (2013) Functions of the hydrophilic channels in protonmotive cytochrome c oxidase, J. R. Soc. Interface, 10, 20130183, doi: 10.1098/rsif.2013.0183.
- Sharma, V., Jambrina, P. G., Kaukonen, M., Rosta, E., and Rich, P. R. (2017) Insights into functions of the H channel of cytochrome c oxidase from atomistic molecular dynamics simulations, Proc. Natl. Acad. Sci. USA, 114, E10339-E10348, doi: 10.1073/pnas.1708628114.
- Wikström, M., and Verkhovsky, M. I. (2007) Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases, Biochim. Biophys. Acta, 1767, 1200-1214, doi: 10.1016/j.bbabio.2007.06.008.
- Salje, J., Ludwig, B., and Richter, O.-M. H. (2005) Is a third proton-conducting pathway operative in bacterial cytochrome c oxidase? Biochem. Soc. Trans., 33, 829-831, doi: 10.1042/BST0330829.
- Lee, H.-m., Das, T. K., Rousseau, D. L., Mills, D., Fergusson-Miller, S., and Gennis, R. (2000) Mutations in the putative H-channel in the cytochrome c oxidase from Rhodobacter sphaeroides show that this channel is not important for proton conduction but reveals modulation of the properties of heme a, Biochemistry, 39, 2989-2996, doi: 10.1021/bi9924821.
- Pfitzner, U., Odenwald, A., T.., O., Weingard, L., Ludwig, B., and Richter, O. M. (1998) Cytochrome c oxidase (heme aa3) from Paracoccus denitrificans: analysis of mutations in putative proton channels of subunit I, J. Bioenerg. Biomembr., 30, 89-97, doi: 10.1023/A:1020515713103.
- Kuznetsova, S. S., Azarkina, N. V., Vygodina, T. V., Siletsky, S. A., and Konstantinov, A. A. (2005) Zink ions as cytochrome c oxidase inhibitors: two sites of action, Biochemistry (Moscow), 70, 128-136, doi: 10.1007/s10541-005-0091-6.
- Sugitani, R., and Stuchebrukhov, A. A. (2009) Molecular dynamics simulation of water in cytochrome c oxidase reveals two water exit pathways and the mechanism of transport, Biochim. Biophys. Acta, 1787, 1140-1150, doi: 10.1016/j.bbabio.2009.04.004.
- Medvedev, D. M., Medvedev, E. S., Kotelnikov, A. I., and Stuchebrukhov, A. A. (2005) Analysis of the kinetics of the membrane potential generated by cytochrome c oxidase upon single electron injection, Biochim. Biophys. Acta, 1710, 47-56, doi: 10.1016/j.bbabio.2005.08.008.
- Siletsky, S., and Konstantinov, A. A. (2006) Electrogenic mechanism of cytochrome c oxidase, The 8th European Biological Chemistry Conference, p. 80.
- Siletsky, S. A., Han, D., Brand, S., Morgan, J. E., Fabian, M., Geren, L., Millett, F., Durham, B., Konstantinov, A. A., and Gennis, R. B. (2006) Single-electron photoreduction of the PM intermediate of cytochrome c oxidase, Biochim. Biophys. Acta, 1757, 1122-1132, doi: 10.1016/j.bbabio.2006.07.003.
- Sugitani, R., Medvedev, E. S., and Stuchebrukhov, A. A. (2008) Theoretical and computational analysis of the membrane potential generated by cytochrome c oxidase upon single electron injection into the enzyme, Biochim. Biophys. Acta, 1777, 1129-1139, doi: 10.1016/j.bbabio.2008.05.006.
- Kaila, V. R., Sharma, V., and Wikström, M. (2011) The identity of the transient proton loading site of the proton-pumping mechanism of cytochrome c oxidase, Biochim. Biophys. Acta, 1807, 80-84, doi: 10.1016/j.bbabio.2010.08.014.
- Popovic, D. M., and Stuchebryukhov, A. A. (2004) Proton pumping mechanism and catalytic cycle of cytochrome c oxidase: Coulomb pump model with kinetic gating, FEBS Lett., 566, 126-130, doi: 10.1016/j.febslet.2004.04.016.
- Lu, J., and Gunner, M. R. (2014) Characterizing the proton loading site in cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 111, 12414-12419, doi: 10.1073/pnas.1407187111.
- Rich, P. R. (1995) Towards an understanding of the chemistry of oxygen reduction and proton translocation in the iron-copper respiratory oxidases, Aust. J. Plant Physiol., 22, 479-486, doi: 10.1071/PP9950479.
- Wikström, M., and Sharma, V. (2018) Proton pumping by cytochrome c oxidase - a 40 year anniversary, Biochim. Biophys. Acta Bioenergetics, 1859, 692-698, doi: 10.1016/j.bbabio.2018.03.009.
- Zimmermann, B. H., Nitsche, C. I., Fee, J. A., Rusnak, F., and Munck, E. (1988) Properties of a copper-containing cytochrome ba3: a second terminal oxidase from the extreme thermophile Thermus Thermophilus, Proc. Natl. Acad. Sci. USA, 85, 5779-5783, doi: 10.1073/pnas.85.16.5779.
- Rauhamaki, V., Bloch, D. A., Verkhovsky, M. I., and Wikström, M. (2009) Active site of cytochrome cbb3, J. Biol. Chem., 284, 11301-11308, doi: 10.1074/jbc.M808839200.
- Rauhamaki, V., Bloch, D. A., and Wikström, M. (2012) Mechanistic stoichiometry of proton translocation by cytochrome cbb3, Proc. Natl. Acad. Sci. USA, 109, 7286-7291, doi: 10.1073/pnas.1202151109.
- Steimle, S., van Eeuwen, T., Ozturk, Y., Kim, H. J., Braitbard, M., Selamoglu, N., Garcia, B. A., Schneidman-Duhovny, D., Murakami, K., and Daldal, F. (2021) Cryo-EM structures of engineered active bc1-cbb3 type CIII2CIV super-complexes and electronic communication between the complexes, Nat. Commun., 12, 929, doi: 10.1038/s41467-021-21051-4.
- Borisov, V. B., Siletsky, S. A., Nastasi, M. R., and Forte, E. (2021) ROS defense systems and terminal oxidases in bacteria, Antioxidants (Basel), 10, 839, doi: 10.3390/antiox10060839.
- Siletskiy, S., Soulimane, T., Azarkina, N., Vygodina, T. V., Buse, G., Kaulen, A., and Konstantinov, A. (1999) Time-resolved generation of membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus. Evidence for reduction-induced opening of the binuclear centre, FEBS Lett., 457, 98-102, doi: 10.1016/S0014-5793(99)01019-4.
- Siletsky, S. A., Belevich, I., Jasaitis, A., Konstantinov, A. A., Wikström, M., Soulimane, T., and Verkhovsky, M. I. (2007) Time-resolved single-turnover of ba3 oxidase from Thermus thermophilus, Biochim. Biophys. Acta, 1767, 1383-1392, doi: 10.1016/j.bbabio.2007.09.010.
- Kannt, A., Lancaster, C. R., and Michel, H. (1998) The coupling of electron transfer and proton translocation: electrostatic calculations on Paracocus denitrificans cytochrome c oxidase, Biophys. J., 74, 708-721, doi: 10.1016/S0006-3495(98)73996-7.
- Rauhamaki, V., and Wikström, M. (2014) The causes of reduced proton-pumping efficiency in type B and C respiratory heme-copper oxidases, and in some mutated variants of type A, Biochim. Biophys. Acta, 1837, 999-1003, doi: 10.1016/j.bbabio.2014.02.020.
Дополнительные файлы
