Анализ воды в реголите луны с помощью прибора лазма-лр в ходе миссии луна-27
- Authors: Чумиков А.Е.1, Чепцов В.С.1, Абраамян Т.А.1
-
Affiliations:
- Институт космических исследований РАН
- Issue: Vol 58, No 5 (2024)
- Pages: 539-553
- Section: Articles
- URL: https://ter-arkhiv.ru/0320-930X/article/view/648531
- DOI: https://doi.org/10.31857/S0320930X24050036
- EDN: https://elibrary.ru/LTOCVI
- ID: 648531
Cite item
Abstract
Определение концентраций воды в полярных областях Луны является одной из приоритетных задач ряда космических миссий и, в частности, миссии Луна-27. В состав комплекса научной аппаратуры космического аппарата Луна-27 входит времяпролетный масс-спектрометр с лазерной ионизацией ЛАЗМА-ЛР, основной задачей которого является анализ элементного состава реголита в месте посадки. Конструкция и конфигурация летного прибора адаптирована для анализа реголита и изначально не предназначалась для исследования летучих соединений. Тем не менее, в связи с важностью задачи определения содержания воды в реголите, нами рассмотрены некоторые подходы к анализу образцов в ходе лунных миссий и оценена применимость ЛАЗМА-ЛР и метода масс-спектрометрии с лазерной ионизацией в целом для выявления воды в реголите. Установлено, что с помощью данного прибора возможно обнаружение воды в реголите, в том числе с определением ее состояния (химически связанная и не связанная вода). При этом для проведения анализа критически важны условия отбора проб реголита и доставки его в грунтоприемное устройство прибора, так как в условиях лунной поверхности возможна сублимация льда до анализа проб. Разработанная методика обладает преимуществами по сравнению с некоторыми другими методами анализа воды и/или льда, применяемыми в космических экспериментах, и может быть применена при исследовании ряда планет и тел Солнечной системы.
Full Text

About the authors
А. Е. Чумиков
Институт космических исследований РАН
Author for correspondence.
Email: cheptcov.vladimir@gmail.com
Russian Federation, Москва
В. С. Чепцов
Институт космических исследований РАН
Email: cheptcov.vladimir@gmail.com
Russian Federation, Москва
Т. А. Абраамян
Институт космических исследований РАН
Email: cheptcov.vladimir@gmail.com
Russian Federation, Москва
References
- Adamson A.W., Gast A.P. Physical chemistry of surfaces. 6th ed. New York, USA: Wiley-Intersci. Publ, 1967. 801 p.
- Anand M., Tartèse R., Barnes J.J. Understanding the origin and evolution of water in the Moon through lunar sample studies // Philos. Trans. A Math. Phys. Eng. Sci. 2014. V. 372. № 2024. P. 20130254.
- Andreas E.L. New estimates for the sublimation rate for ice on the Moon // Icarus. 2007. V. 186. № 1. P. 24–30.
- Arp Z.A., Cremers D.A., Wiens R.C., Wayne D.M., Sallé B., Maurice S. Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: Application to Mars polar exploration // Appl. Spectrosc. 2004. V. 58. № 8. P. 897–909.
- Avanesov G.A., Berezhkov A.V., Bessonov R.V., Voronkov S.V., Zhukov B.S., Zubarev A.E., Kudelin M.I., Nikitin A.V., Polyanskii I.V., Forsh A.A., El’yashev Y.D. Luna-25 service television system // Sol. Syst. Res. 2021. V. 55. № 6. 588–604.
- Bagla P. India plans to land near Moon's South pole // Science. 2018. V. 359. № 6375. P. 503–504.
- Bayer T., Buffington B., Castet J.F., Jackson M., Lee G., Lewis K., Kastner J., Schimmels K., Kirby K. Europa mission update: Beyond payload selection // IEEE Aerospace Conf. 2017. P. 1–12.
- Chevrier V., Sears D.W., Chittenden J.D., Roe L.A., Ulrich R., Bryson K., Billingsley L., Hanley J. Sublimation rate of ice under simulated Mars conditions and the effect of layers of mock regolith JSC Mars-1 // Geophys. Res. Lett. 2007. V. 34. № 2. id. L02203.
- Chumikov A.E., Cheptsov V.S., Managadze N.G. Accuracy of analysis of the elemental and isotopic composition of regolith by laser time-of-flight mass spectrometry in the future Luna-Glob and Luna-Resurs-1 missions // Sol. Syst. Res. 2020. V. 54. № 4. P. 288–294.
- Chumikov A.E., Cheptsov V.S., Managadze N.G. Microchannel plate detector gain decrease through storage under environmental conditions // IEEE Trans. Instrum. and Meas. 2023. V. 72. P. 1–8.
- Chumikov A.E., Cheptsov V.S., Managadze N.G., Managadze G.G. LASMA-LR laser-ionization mass spectrometer onboard Luna-25 and Luna-27 missions // Sol. Syst. Res. 2021a. V. 55. № 6. P. 550–561.
- Chumikov A.E., Cheptsov V.S., Wurz P., Lasi D., Jost J., Managadze N.G. Design, characteristics and scientific tasks of the LASMA-LR laser ionization mass spectrometer onboard Luna-25 and Luna-27 space missions // Int. J. Mass Spec. 2021b. V. 469. id. 116676.
- Colaprete A., Schultz P., Heldmann J., Wooden D., Shirley M., Ennico K., Hermalyn B., Marshall W., Ricco A., Elphic R.C., and 7 co-authors. Detection of water in the LCROSS ejecta plume // Science. 2010. V. 330. № 6003. P. 463–468.
- Colwell J.E., Robertson S.R., Horányi M., Wang X., Poppe A., Wheeler P. Lunar dust levitation // J. Aerosp. Eng. 2009. V. 22. № 1. P. 2–9.
- Dachwald B., Ulamec S., Postberg F., Sohl F., de Vera J.P., Waldmann C., Lorenz R.D., Zacny K.A., Hellard H., Biele J., Rettberg P. Key technologies and instrumentation for subsurface exploration of ocean worlds // Space Sci. Rev. 2020. V. 216. № 5. P. 1–45.
- Djachkova M.V., Litvak M.L., Mitrofanov I.G., Sanin A.B. Selection of Luna-25 landing sites in the South Polar Region of the Moon // Sol. Syst. Res. 2017. V. 51. № 3. P. 185–195.
- Djachkova M.V., Mitrofanov I.G., Sanin A.B., Litvak M.L., Tret’yakov V.I. Selecting a landing site for the Luna 27 spacecraft // Sol. Syst. Res. 2022. V. 56. № 3. P. 145–154.
- Farrell W.M., Hurley D.M., Zimmerman M.I. Solar wind implantation into lunar regolith: Hydrogen retention in a surface with defects // Icarus. 2015. V. 255. 116–126.
- Golovin D.V., Mokrousov M.I., Mitrofanov I.G., Kozyrev A.S., Litvak M.L., Malakhov A.V., Nikiforov S.Yu., Sanin A.B., Barmakov Y.N., Bogolubov E.P., Sholeninov S.E.,Yurkov D.I. ADRON-LR instrument for active neutron sensing of the lunar matter composition // Sol. Syst. Res. 2021. V. 55. № 6. P. 529–536.
- Heldmann J.L., Lamb J., Asturias D., Colaprete A., Goldstein D.B., Trafton L.M., Varghese P.L. Evolution of the dust and water ice plume components as observed by the LCROSS visible camera and UV–visible spectrometer // Icarus. 2015. V. 254. P. 262–275.
- Hudson T.L., Aharonson O., Schorghofer N., Farmer C.B., Hecht M.H., Bridges N.T. Water vapor diffusion in Mars subsurface environments // J. Geophys. Res.: Planets. 2007. V. 112. id. E05016.
- Jeffries T.E., Perkins W.T., Pearce N.J. Comparisons of infrared and ultraviolet laser probe microanalysis inductively coupled plasma mass spectrometry in mineral analysis // Analyst. 1995. V. 120. № 5. P. 1365–1371.
- Jia Y., Liu L., Wang X., Guo N., Wan G. Selection of Lunar South Pole landing site based on constructing and analyzing fuzzy cognitive maps // Remote Sensing. 2022. V. 14. № 19. id. 4863.
- Kleinhenz J.E., Zacny K., Smith J. Impact of drilling operations on lunar volatiles capture: Thermal vacuum tests // 8th Symp. Space Resource Utiliz. 2015. P. 1177.
- Kossacki K.J. Sublimation of cometary ices in the presence of organic volatiles II // Icarus. 2019. V. 319. P. 470–475.
- Kossacki K.J., Leliwa-Kopystynski J. Temperature dependence of the sublimation rate of water ice: Influence of impurities // Icarus. 2014. V. 233. P. 101–105.
- Li S., Lucey P.G., Milliken R.E., Hayne P.O., Fisher E., Williams J.P., Hurley D.M., Elphic R.C. Direct evidence of surface exposed water ice in the lunar polar regions // Proc. Nat. Acad. Sci. 2018. V. 115. № 36. P. 8907–8912.
- Li Y., Wen Z., He C., Wei Y., Gao Q. The mechanism for the barrier of Lunar regolith on the migration of water molecules // J. Geophys. Res.: Planets. 2023. V. 128. № 3. id. e2022JE007254.
- Lemelin M., Blair D.M., Roberts C.E., Runyon K.D., Nowka D., Kring D.A. High-priority lunar landing sites for in situ and sample return studies of polar volatiles // Planet. and Space Sci. 2014. V. 101. P. 149–161.
- Lemelin M., Li S., Mazarico E., Siegler M.A., Kring D.A., Paige D.A. Framework for coordinated efforts in the exploration of volatiles in the south polar region of the Moon // Planet. Sci. J. 2021. V. 2. № 3. P. 103.
- Managadze G.G., Wurz P., Sagdeev R.Z., Chumikov A.E., Tuley M., Yakovleva M., Managadze N.G., Bondarenko A.L. Study of the main geochemical characteristics of Phobos’ regolith using laser time-of-flight mass spectrometry // Sol. Syst. Res. 2010a. V. 44. № 5. P. 376–384.
- Managadze G.G., Safronova A.A., Luchnikov K.A., Vorobyova E.A., Duxbury N.S., Wurz P., Managadze N.G., Chumikov A.E., Khamizov R.K. A new method and mass-spectrometric instrument for extraterrestrial microbial life detection using the elemental composition analyses of Martian regolith and permafrost/ice // Astrobiology. 2017. V. 17. № 5. P. 448–458.
- b№Mantsevich S.N., Dobrolenskiy Y.S., Evdokimova N.A., Korablev O.I., Kalinnikov Y.K., Vyazovetskiy N.A., Dzyuban I.A., Sapgir A.G., Stepanov A.V., Titov A.Yu., and 6 co-authors. Lunar infrared spectrometer with TV support of the robotic arm working zone (LIS-TV-RPM) // Sol. Syst. Res. 2021. V. 55. P. 537–549.
- MacKenzie S.M., Neveu M., Davila A.F., Lunine J.I., Craft K.L., Cable M.L., Phillips-Lander C.M., Hofgartner J.D., Eigenbrode J.L., Waite Jr J.H., and 17 co-authors. The Enceladus Orbilander mission concept: Balancing return and resources in the search for life // Planet. Sci. J. 2021. V. 2. id. 77.
- Markovits T., Bauernhuber A., Mikula P. Study on the transparency of polymer materials in case of Nd: YAG laser radiation // Period. Polytech. Transp. Eng. 2013. V. 41. № 2. P. 149–154.
- McKay D.S., Carter J.L., Boles W.W., Allen C.C., Allton J.H. JSC-1: A new lunar soil simulant // Eng., construct., and operations in space. IV. 1994. V. 2. P. 857–866.
- McLeod C.L., Krekeler M.P. Sources of extraterrestrial rare earth elements: to the Moon and beyond // Resources. 2017. V. 6. № 3. P. 40.
- Mitrofanov I.G., Sanin A.B., Boynton W.V., Chin G., Garvin J.B., Golovin D., Evans L.G., Harshman K., Kozyrev A.S., Litvak M.L., and 19 co-authors. Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND // Science. 2010. V. 330. № 6003. P. 483–486.
- Mitrofanov I.G., Zelenyi L.M., Tret’yakov V.I., Kalashnikov D.V. Luna-25: The first polar mission to the Moon // Sol. Syst. Res. 2021. V. 55. № 6. P. 485–495.
- NASA. Artemis III Science Definition Report NASA/SP-20205009602.2020. 188p. https://www.nasa.gov/sites/default/files/atoms/files/artemis-iii-science-definition-report-12042020c.pdf. Дата обращения: 21.12.23.
- Padma T.V. India’s Moon mission: four things Chandrayaan-3 has taught scientists // Nature. 2023. V. 621. № 7979. P. 456–456.
- Pavlov S.G., Jessberger E.K., Hübers H.W., Schröder S., Rauschenbach I., Florek S., Neumann J., Henkel H., Klinkner S. Miniaturized laser-induced plasma spectrometry for planetary in situ analysis – The case for Jupiter’s moon Europa // Adv. Space Res. 2011. V. 48. № 4. P. 764–778.
- Piquette M., Horányi M., Stern S.A. Laboratory experiments to investigate sublimation rates of water ice in night time lunar regolith // Icarus. 2017. V. 293. P. 180–184.
- Poppe A., Horányi M. Simulations of the photoelectron sheath and dust levitation on the lunar surface // J. Geophys. Res.: Space Phys. 2010. V. 115. id. A08106.
- Schou J., Matei A., Rodrigo K., Dinescu M. Laser-induced plasma from pure and doped water-ice at high fluence by ultraviolet and infrared radiation // High-Power Laser Ablation VII. 2008. V. 7005. id. 70050X.
- Siegler M., Paige D., Williams J.P., Bills B. Evolution of lunar polar ice stability // Icarus. 2015. V. 255. P. 78–87.
- Sobron P. Exploring Europa with Raman and LIBS // 47th Lunar and Planet. Sci. Conf. 2016. № 1903. id. 1745.
- Song H., Zhang J., Ni D., Sun Y., Zheng Y., Kou J., Zhang X., Li Z. Investigation on in-situ water ice recovery considering energy efficiency at the lunar south pole // Appl. Energy. 2021. V. 298. id. 117136.
- Sowers G.F., Dreyer C.B. Ice mining in lunar permanently shadowed regions // New Space. 2019. V. 7. № 4. P. 235–244.
- Starukhina L.V., Shkuratov Y.G. The lunar poles: Water ice or chemically trapped hydrogen? // Icarus. 2000. V. 147. № 2. P. 585–587.
- Tartèse R., Anand M., Gattacceca J., Joy K.H., Mortimer J.I., Pernet-Fisher J.F., Russell S., Snape J.F., Weiss B.P. Constraining the evolutionary history of the Moon and the inner Solar system: A case for new returned lunar samples // Space Sci. Rev. 2019. V. 215. № 8. id. 54.
- Tucker O.J., Farrell W.M., Killen R.M., Hurley D.M. Solar wind implantation into the lunar regolith: Monte Carlo simulations of H retention in a surface with defects and the H2 exosphere // J. Geophys. Res.: Planets. 2019. V. 124. № 2. P. 278–293.
- Tulej M., Neubeck A., Ivarsson M., Riedo A., Neuland M.B., Meyer S., Wurz P. Chemical composition of micrometer-sized filaments in an aragonite host by a miniature laser ablation/ionization mass spectrometer // Astrobiology. 2015. V. 15. № 8. P. 669–682.
- Tulej M., Riedo A., Iakovleva M., Wurz P. On applicability of a miniaturised laser ablation time of flight mass spectrometer for trace elements measurements // Int. J. Spectrosc. 2012. id. 234949.
- Volkov R.V., Golishnikov D.M., Gordienko V.M., Dzhidzhoev M.S., Lachko I.Y.M., Mar'in B.V., Mikheev P.M., Savel'ev A.B., Uryupina D.S., Shashkov A.A. Formation of the ion current of a high-temperature femtosecond laser plasma on the target surface containing an impurity layer // Quant. Electron. 2003. V. 33. № 11. id. 981.
- Wiens R.C., Wan X., Lasue J., Maurice S. Laser-induced breakdown spectroscopy in planetary science // Laser-Induced Breakdown Spectroscopy. 2nd ed. / Eds: Singh J.P., Thakur S.N. Netherlands: Elsevier Sci., 2020. P. 441–471.
- Wurz P., Abplanalp D., Tulej M., Iakovleva M., Fernandes V.A., Chumikov A., Managadze G.G. Mass spectrometric analysis in planetary science: Investigation of the surface and the atmosphere // Sol. Syst. Res. 2012. V. 46. № 6. P. 408–422.
- Xu Y., Tian H.C., Zhang C., Chaussidon M., Lin Y., Hao J., Li R., Gu L., Yang W., Huang L., and 7 co-authors. High abundance of solar wind-derived water in lunar soils from the middle latitude // Proc. Nat. Acad. Sci. 2022. V. 119. № 51. id. e2214395119.
Supplementary files
