Вариации скорости ветра на верхней границе облаков Венеры над Землей Афродиты по многолетним УФ-наблюдениям VMC/Venus Express и UVI/Akatsuki

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Серии последовательных УФ-изображений (365 нм) облачного покрова Венеры позволяют исследовать динамику мезосферы. Беспрецедентный по продолжительности ряд таких изображений получен камерами VMC на борту космического аппарата (КА) Venus Express (ESA) и UVI на борту КА Akatsuki (JAXA) c 2006 по 2022 гг. На 10° ю. ш. наблюдаются долговременные изменения средней зональной и меридиональной скоростей ветра с периодом 12.5 ± 0.5 лет. Анализ поведения среднего зонального ветра около полудня 12 ± 1 ч. при фазовых углах 60°–90° в ограниченные по времени интервалы наблюдения показывает, что вблизи минимума долгопериодической зависимости торможение горизонтального потока наблюдается над областью Овды, наиболее высокой частью Земли Афродиты, как для VMC, так и для UVI. И наоборот, ускорение наблюдается над областью Овды вблизи максимума долгопериодической зависимости. Рассматриваемые долготные вариации зональной скорости простираются от экватора до средних широт (0°–40°). Меридиональная скорость показывает долготные вариации, связанные с рельефом подстилающей поверхности, вне зависимости от того, торможение или ускорение горизонтального потока наблюдается над высокогорной частью Земли Афродиты.

Full Text

Restricted Access

About the authors

М. В. Пацаева

Институт космических исследований РАН (ИКИ РАН)

Author for correspondence.
Email: marina.pats@cosmos.ru
Russian Federation, Москва

И. В. Хатунцев

Институт космических исследований РАН (ИКИ РАН)

Email: marina.pats@cosmos.ru
Russian Federation, Москва

Д. В. Титов

Leiden Observatory, Leiden University

Email: marina.pats@cosmos.ru
Netherlands, Leiden

Н. И. Игнатьев

Институт космических исследований РАН (ИКИ РАН)

Email: marina.pats@cosmos.ru
Russian Federation, Москва

Л. В. Засова

Институт космических исследований РАН (ИКИ РАН)

Email: marina.pats@cosmos.ru
Russian Federation, Москва

Д. А. Горинов

Институт космических исследований РАН (ИКИ РАН)

Email: marina.pats@cosmos.ru
Russian Federation, Москва

А. В. Тюрин

Институт космических исследований РАН (ИКИ РАН)

Email: marina.pats@cosmos.ru
Russian Federation, Москва

References

  1. Мингалев И.В., Родин А.В., Орлов К.Г. Численное моделирование общей циркуляции атмосферы Венеры. Влияние рельефа поверхности и режима нагрева излучением // Астрон. вестн. 2015. Т. 49. № 1. С. 27–45. (Mingalev I.V., Rodin A.V., Orlov K.G. Numerical simulations of the global circulation of the atmosphere of Venus: Effects of surface relief and solar radiation heating // Sol. Syst. Res. 2015. V. 49. № 1. P. 24–42). https://doi.org/10.1134/S0038094614060057
  2. Andrews D.G., Holton J.R., Leovy C.B. Middle atmosphere dynamics. Acad. Press, 1987. 489 p.
  3. Asai T. Three-Dimensional features of thermal convection in a plane couette low // J. Meteorological Soc. Japan. 1970. V. 48. № 1. P. 18–29. https://doi.org/10.2151/jmsj1965.48.1_18
  4. Baker R.D., Schubert G., James P.W. Convectively generated internal gravity waves in the lower atmosphere of Venus. Part II: Mean wind shear and wave–mean flow interaction // J. Atmos. Sci. 2000. V. 57. P. 200–215. https://doi.org/10.1175/1520–0469(2000)057<0200: CGIGWI>2.0.CO;2
  5. Berrevoets C., DeClerq B., George T., Makolkin D., Maxson P., Pilz B., Presnyakov P., Roel E., Weiller S. // Astrophysics Source Code Library, 2012, record ascl:1206.001, 2012ascl.soft06001B.
  6. Bertaux J.-L., Khatuntsev I.V., Hauchecorne A., Markiewicz W.J., Marcq E., Lebonnois S., Patsaeva M., Turin A., Fedorova A. Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves // J. Geophys. Res.: Planets. 2016. V. 121. P. 1087–1101. https://doi.org/10.1002/2015JE004958
  7. Fedorova A., Marcq E., Luginin M., Korablev O., Bertaux J.-L., Montmessin F. Variations of water vapor and cloud top altitude in the Venus’ mesosphere from SPICAV/Vex observations // Icarus. 2016. V. 275. P. 143–162. http://dx.doi.org/10.1016/j.icarus.2016.04.010
  8. Fukuhara T., Futaguchi M., Hashimoto G.L., Horinouchi T., Imamura T., Iwagaimi N., Kouyama T., Murakami S., Nakamura M., Ogohara K., Sato M., Sato T.M., Suzuki M., Taguchi M., Takagi S., Ueno M., Watanabe S., Yamada M., Yamazaki A. Large stationary gravity wave in the atmosphere of Venus // Nature. Geosci. 2017. V. 10. № 2. P. 85–88. https://doi.org/10.1038/ngeo2873
  9. Gorinov D.A., Zasova L.V., Khatuntsev I.V., Patsaeva M.V., Turin A.V. Winds in the lower cloud level on the nightside of Venus from VIRTIS-M (Venus Express) 1.74 μm images // Atmosphere. 2021. V. 12. P. 186. https://doi.org/10.3390/atmos12020186
  10. Herrnstein A., Dowling T.E. Effects of topography on the spin-up of a Venus atmospheric model // J. Geophys. Res. 2007. V. 112. id. E04S08. http://dx.doi.org/10.1029/2006JE002804
  11. Hinson D.P., Jenkins J.M. Magellan radio occultation measurements of atmospheric waves on Venus // Icarus. 1995. V. 114. P. 310–327.
  12. Horinouchi T., Kouyama T., Lee Y.J., Murakami S., Ogohara K., Takagi M., Imamura T., Nakajima K., Peralta J., Yamazaki A., Yamada M., Watanabe S. Mean winds at the cloud top of Venus obtained from two-wavelength UV imaging by Akatsuki // Earth, Planets and Space. 2018. V. 70. id. 10. https://doi.org/10.1186/s40623-017-0775-3
  13. Imai M., Kouyama T., Takahashi Y., Yamazaki A., Watanabe S., Yamada M., Imamura T., Satoh T., Nakamura M., Murakami S., Ogohara K., Horinouchi T. Planetary-scale variations in winds and UV brightness at the Venusian cloud top: Periodicity and temporal evolution // J. Geophys. Res.: Planets. 2019. V. 124. P. 2635–2659. https://doi.org/10.1029/2019JE006065
  14. Imamura T., Ando H., Tellmann S., Pätzold M., Häusler B., Yamazaki A., Sato T.M., Noguchi K., Futaana Y., Oschlisniok J., Limaye S., Choudhary R.K., Murata Y., Takeuchi H., Hirose C. and 24 co-authors. Initial performance of the radio occultation experiment in the Venus orbiter mission Akatsuki // Earth, Planets and Space. 2017. V. 69. P. 137–147. https://doi.org/10.1186/s40623-017-0722-3
  15. Khatuntsev I.V., Patsaeva M.V., Titov D.V., Ignatiev N.I., Turin A.V., Limaye S.S., Markiewicz W.J., Almeida M., Roatsch Th., Moissl R. Cloud level winds from the Venus Express Monitoring Camera imaging // Icarus. 2013. V. 226. P. 140–158. https://doi.org/10.1016/j.icarus.2013.05.018
  16. Khatuntsev I.V., Patsaeva M.V., Titov D.V., Ignatiev N.I., Turin A.V., Fedorova A.A., Markiewicz W.J. Winds in the middle cloud deck from the near-IR imaging by the Venus Monitoring Camera onboard Venus Express // J. Geophys. Res.: Planets. 2017. V. 122. P. 2312–2327. https://doi.org/10.1002/2017JE005355
  17. Khatuntsev I.V., Patsaeva M.V., Zasova L.V., Titov D.V., Ignatiev N.I., Gorinov D.A., Turin A.V. Winds from the visible (513 nm) images obtained by the Venus monitoring camera onboard Venus Express // J. Geophys. Res.: Planets. 2022. V. 127. e2021JE007032. https://doi.org/10.1029/2021JE007032
  18. Lafler J., Kinman T.D. An RR Lyrae star survey with the Lick 20-inch astrograph II. The calculation of RR Lyrae periods by electronic computer // Astrophys. J. Suppl. 1965. V. 11. P. 216.
  19. Lee Y.J., Jessup K.L., Perez-Hoyos S., Titov D.V., Lebonnois S., Peralta J., Horinouchi T., Imamura T., Limaye S., Marcq E., and 9 co-authors. Long-term variations of Venus’ 365-nm albedo observed by Venus Express, Akatsuki, MESSENGER, and Hubble Space Telescope // Astron. J. 2019. V. 158. № 3. id. 126. https://doi.org/10.3847/1538–3881/ab312
  20. Lee Y.J., Kopparla P., Peralta J., Schroder S.E., Imamura T., Kouyama T., Watanabe S. Spatial and temporal variability of the 365-nm albedo of Venus observed by the camera on board Venus Express // J. Geophys. Res.: Planets. 2020. V. 125. id. e2019JE006271. https://doi.org/10.1029/2019JE006271
  21. Lefèvre M., Spiga A., Lebonnois S. Mesoscale modeling of Venus’ bow-shape waves // Icarus. 2020. V. 335. id. 113376. http://dx.doi.org/10.1016/j.icarus.2019.07.010
  22. Lim A., Jaenisch H., Handley J., Filipovic M., White G., Hons A., Berrevoets C., Deragopian G., Payne J., Schneider M., Edwards M. Image resolution and performance analysis of webcams for ground-based astronomy // Proc. SPIE. The International Soc. Optical Eng. 2004. https://doi.org/10.1117/12.549297
  23. Limaye S.S., Suomi V. A normalized view of Venus // J. Atmos. Sci. 1977. V. 34. P. 205–215. https://doi.org/10.1175/1520-0469(1977)034<0205: ANVOV>2.0.CO;2
  24. Limaye S.S. Morphology and movements of polarization features on Venus as seen from the Pioneer Orbiter Cloud Photopolarimeter data // Icarus. 1984. V. 57. P. 362–385. https://doi.org/10.1016/0019-1035(84)90124-6
  25. Limaye S.S., Grassi D., Mahieux A., Migliorini A., Tellmann S., Titov D. Venus atmospheric thermal structure and radiative balance // Space Sci. Rev. 2018. V. 214. id. 102. https://doi.org/10.1007/s11214-018-0525-2
  26. Lindzen R.S. Turbulence and stress owing to gravity wave and tidal breakdown // J. Geophys. Res. 1981. V. 86. P. 9707–9714. https://doi.org/10.1029/JC086iC10p09707
  27. Luginin M., Fedorova A., Belyaev D., Montmessin F., Wilquet V., Korablev O., Bertaux J.-L., Vandaele A.C. Aerosol properties in the upper haze of Venus from SPICAV IR data // Icarus. 2016. V. 277. P. 154–170. http://dx.doi.org/10.1016/j.icarus.2016.05.008
  28. Markiewicz W.J., Titov D.V., Ignatiev N., Keller H.U., Crisp D., Limaye S.S., Jaumann R., Moissl R., Thomas N., Esposito L., Watanabe S., Fiethe B., Behnke T., Szemerey I., Michalik H., and 16 co-authors. Venus Monitoring Camera for Venus Express // Planet. and Space Sci. 2007. V. 55. № 12. P. 1701–1711. https://doi.org/10.1016/j.pss.2007.01.004
  29. Minnaert M. The reciprocity principle in lunar photometry // Astrophys. J. 1941. V. 93. P. 403–410. https://doi.org/10.1086/144279
  30. Murakami S., Yamada M., Yamazaki A., McGouldrick K., Yamamoto Y., Hashimoto G.L. Venus Climate Orbiter Akatsuki UVI Calibrated Data v1.0, VCO-V-UVI-3-CDR-V1.0 // NASA Planetary Data System. 2017. https://doi.org/10.17597/isas.darts/vco-00003
  31. Murakami S., Ogohara K., Takagi M., Kashimura H., Yamada M., Kouyama T., Horinouchi T., Imamura T. Venus Climate Orbiter Akatsuki UVI Longitude-Latitude Map Data v1.0. // JAXA Data Arch. Transm. Syst. 2018. https://doi.org/10.17597/isas.darts/vco-00016
  32. Nakamura M., Imamura T., Ishii N., Abe T., Kawakatsu Y., Hirose C., Satoh T., Suzuki M., Ueno M., Yamazaki A., Iwagami N., Watanabe S., Taguchi M., Fukuhara T., Takahashi Y., and 37 co-authors. AKATSUKI returns to Venus // Earth, Planets and Space. 2016. V. 68. id. 75. https://doi.org/10.1186/s40623-016-0457-6
  33. Navarro T., Schubert G., Lebonnois S. Atmospheric Mountain wave generation on Venus and its influence on the solid planet's rotation rate // Nature Geoscience. 2018. V. 11. № 7. P. 487–491. https://doi.org/10.1038/s41561-018-0157-x
  34. Patsaeva M.V., Khatuntsev I.V., Patsaev D.V., Titov D.V., Ignatiev N.I., Markiewicz W.J., Rodin A.V. The relationship between mesoscale circulation and cloud morphology at the upper cloud level of Venus from VMC/Venus Express // Planet. and Space Sci. 2015. V. 113. № 08. P. 100–108. https://doi.org/10.1016/j.pss.2015.01.013
  35. Patsaeva M.V., Khatuntsev I.V., Zasova L.V., Hauchecorne A., Titov D.V., Bertaux J.-L. Solar Related variations of the cloud top circulation above Aphrodite Terra from VMC/Venus Express wind fields // J. Geophys. Res.: Planets. 2019. V. 124. P. 1864–1879. https://doi.org/10.1029/2018JE005620
  36. Peralta J., Hueso R., Sánchez-Lavega A., Piccioni G., Lanciano O., Drossart P. Characterization of mesoscale gravity waves in the upper and lower clouds of Venus from VEX–VIRTIS images // J. Geophys. Res. 2008. V. 113. id. E00B18. https://doi.org/10.1029/2008JE003185
  37. Pérez-Hoyos S., Sánchez-Lavega A., García-Muñoz A., Irwin P.G.J., Peralta J., Holsclaw G., McClintock W.M., Sanz-Requena J.F. Venus upper clouds and the UV absorber from MESSENGER/MASCS observations // J. Geophys. Res.: Planets. 2018. V. 123. P. 145–162. https://doi.org/10.1002/2017JE005406
  38. Piccialli A., Titov D.V., Sanchez-Lavega A., Peralta J., Shalygina O., Markiewicz W.J., Svedhem H. High latitude gravity waves at the Venus cloud tops as observed by the Venus Monitoring Camera on board Venus Express // Icarus. 2014. V. 227. P. 94–111. https://doi.org/10.1016/j.icarus.2013.09.012
  39. Pollack J.B., Toon O.B., Witten R.C., Boese R., Ragent B., Tomasko M., Esposito L., Travis L., Wiedman D. Distribution and source of the UV absorption in Venus’ atmosphere // J. Geophys. Res. 1980. V. 85 № A13. P. 8141–8150. https://doi.org/10.1029/JA085iA13p08141
  40. Salby M.L. Physics of the atmosphere and climate. Cambridge Univ. Press, 2012. 718 p.
  41. Sánchez-Lavega A., Lebonnois S., Imamura T., Read P., Luz D. The atmospheric dynamics of Venus // Space Sci. Rev. 2017. V. 212. P. 1541–1616. https://doi.org/10.1007/s11214-017-0389-x
  42. Schubert G. General circulation and dynamical state of the Venus atmosphere // Venus / Eds: Hunten D., Colin L., Donahue T., Moroz V.I. Tucson, AZ: Univ. Arizona Press, 1983. P. 681–765.
  43. Seiff A., Schofield J.T., Kliore A.J., Taylor F.W., Limaye S.S., Revercomb H.E., Sromovsky L.A., Kerzhanovich V.V., Moroz V.I., Marov M. Ya. Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude // Adv. Space Res. 1985. V. 5. № 11. P. 3–58. https://doi.org/10.1016/0273-1177(85)90197-8
  44. Svedhem H., Titov D.V., Taylor F.W., Witasse O. The Venus Express mission // J. Geophys. Res. 2009. V. 114. id. E00B33. https://doi.org/10.1029/2008JE003290
  45. Tellmann S., Häusler B., Hinson D.P., Tyler G.L., Andert T.P., Bird M.K., Imamura T., Pätzold M., Remus S. Small-scale temperature fluctuations seen by the VeRa Radio Science Experiment on Venus Express // Icarus. 2012. V. 221. P. 471–480. http://dx.doi.org/10.1016/j.icarus.2012.08.023
  46. Titov D.V., Svedhem H., Koschny D., Hoofs R., Barabash S., Bertaux J., Drossart P., Formisano V., Häusler B., Korablev O., Markiewicz W.J., Nevejans D., Pätzold M., Piccioni G., Zhang T.L., and 8 co-authors. Venus Express science planning // Planet. and Space Sci. 2006. V. 54. P. 1279–1297. https://doi.org/10.1016/j.pss.2006.04.017
  47. Titov D.V., Markiewicz W.J., Ignatiev N.I., Li Song, Limaye S.S., Sánchez-Lavega A., Hesemann J., Almeida M., Roatsch Th., Matz K.-D., Scholten F., Crisp D., Esposito L.W., Hviid S.F., Jaumann R., Keller H.U., Moissl R. Morphology of the cloud tops as observed by the Venus Express Monitoring Camera // Icarus. 2012. V. 217. P. 682–701. https://doi.org/10.1016/j.icarus.2011.06.020
  48. Wilquet V., Drummond R., Mahieux A., Rober S., Vandaele A.C., Bertaux J.-L. Optical extinction due to aerosols in the upper haze of Venus: Four years of SOIR/VEX observations from 2006 to 2010 // Icarus. 2012. V. 217. P. 875–881. https://doi.org/10.1016/j.icarus.2011.11.002
  49. Yamada T., Imamura T., Fukuhara T., Taguchi M. Influence of the cloud-level neutral layer on the vertical propagation of topographically generated gravity waves on Venus // Earth, Planets and Space. 2019. V. 71. id. 123. https://doi.org/10.1186/s40623-019-1106-7
  50. Yamazaki A., Yamada M., Lee Y.J., Watanabe S., Horinouchi T., Murakami S., Kouyama T., Ogohara K., Imamura T., Sato T.M., Yamamoto Y., Fukuhara T., Ando H., Sugiyama K., Takagi S., and 11 co-authors. Ultraviolet imager on Venus orbiter Akatsuki and its initial results // Earth, Planets and Space. 2018. V. 70. id. 23. https://doi.org/10.1186/s40623-017-0772-6
  51. Yamamoto M. Equatorial Kelvin-like waves on slowly rotating and/or small-sized spheres: Application to Venus and Titan // Icarus. 2019. V. 322. P. 103–113. http://dx.doi.org/10.1016/j.icarus.2019.01.008
  52. Yamamoto M., Ikeda K., Takahashi M. Atmospheric response to high-resolution topographical and radiative forcings in a general circulation model of Venus: Time-mean structures of waves and variances // Icarus. 2021. V. 355. id. 114154. https://doi.org/10.1016/j.icarus.2020.114154
  53. Young R.E., Walterscheid R.L., Schubert G., Seiff A., Linkin V.M., Lipatov A.N. Characteristics of gravity waves generated by surface topography on Venus: Comparison with the VEGA balloon results // J. Atmos. Sci. 1987. V. 44. № 18. P. 2628–2639. https://doi.org/10.1175/1520-0469(1987)044%3C2628: COGWGB%3E2.0.CO;2

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Longitudinal coverage of measurements (wind speed vectors) from 2006 to 2022 in the latitudinal band of 10° ± 5° S around midday 12 ± 1 h for the phase angle of 60°–90°. Blue circles indicate measurements with VMC, green squares – with UVI.

Download (244KB)
3. Fig. 2. Long-term variations in the mean (a) zonal and (b) meridional wind speeds obtained from VMC (blue) and UVI (green) images at 10° ± 5° S. Each point is the result of averaging over a Venusian year. The vertical bars indicate the 99.6% confidence interval (3 ). The light blue and light green areas correspond to the standard deviation σ. The approximating sinusoids are marked with a red dotted line.

Download (268KB)
4. Fig. 3. Longitudinal variations of the mean zonal wind speed averaged over time intervals corresponding to six Venusian years and obtained from VMC ((a) and (c)) and UVI ((d) and (g)) images in the latitudinal band of 10° ± 5° S. Longitudinal variations of the residual u–u12.5 zonal wind speed series after subtracting the sinusoid for VMC ((b) and (d)) and UVI ((f) and (h)). The error corresponds to the 99.6% confidence interval (3 ). The light blue and light green areas correspond to the standard deviation σ. The mean surface relief height in the same latitudinal band is shown by the black curve.

Download (581KB)
5. Fig. 4. Long-period variations of the zonal (a) and meridional (b) components of the mean horizontal flow velocity at a latitude of 10° ± 5° S over highlands (black) and lowlands (red). Each point is the result of averaging over a Venusian year. The error corresponds to a confidence interval of 99.6% (3 ). The dotted lines indicate sinusoids with a period of 12.5 ± 0.5 years.

Download (299KB)
6. Fig. 5. Spatial distribution of the mean zonal wind speed, averaged over the time intervals 2007–2010 (a), 2010–2013 (b), 2016–2019 (c), 2017–2020 (d). Black contours indicate elevations of the planet's surface greater than 1 km.

Download (285KB)
7. Fig. 6. Longitudinal variations in the mean meridional wind speed at 10° ± 5° S (blue), 35° ± 5° S (red), 10° ± 5° N (green), and the equator 0° ± 5° (black). The meridional speed is averaged over the time intervals 2007–2010 (a), 2010–2013 (b), 2016–2019 (c), and 2017–2020 (d). The error corresponds to the 99.6% confidence interval (3 ).

Download (475KB)
8. Fig. 7. Longitudinal variations of the mean zonal wind speed in the latitudinal band of 10° ± 5° S around midday 12 ± 1 h from December 2015 to March 2017 (red). The error corresponds to the 99.6% confidence interval (3 ). The light blue area corresponds to the standard deviation σ. The mean surface relief height in the same latitudinal band is shown by the black curve.

Download (188KB)

Copyright (c) 2024 The Russian Academy of Sciences