Комплекс научной аппаратуры посадочной платформы ЭкзоМарс‑2022
- Authors: Кораблев О.И.1, Родионов Д.С.1, Зеленый Л.М.1
-
Affiliations:
- Институт космических исследований Российской академии наук (ИКИ РАН)
- Issue: Vol 58, No 1 (2024)
- Pages: 3-31
- Section: Articles
- URL: https://ter-arkhiv.ru/0320-930X/article/view/648500
- DOI: https://doi.org/10.31857/S0320930X24010011
- EDN: https://elibrary.ru/OIHISN
- ID: 648500
Cite item
Abstract
Представлены научные задачи, приборы и программа измерений комплекса научной аппаратуры стационарной посадочной платформы “Казачок” проекта Госкорпорации Роскосмос и Европейского космического агентства (ESA) ЭкзоМарс-2022. Научные задачи исследований на посадочной платформе включали долговременный мониторинг климата, исследования состава атмосферы, механизмов подъема пыли и связанных электрических явлений, взаимодействий между атмосферой и поверхностью, распространенности воды в подповерхностом слое, мониторинг радиационной обстановки и изучение внутреннего строения Марса. Для решения этих задач были созданы, испытаны и интегрированы в состав космического комплекса 11 российских и два европейских прибора общей массой 45 кг. В их числе система телевизионных камер, метеокомплексы, комплекс для исследования пыли и связанных с ней электрических явлений, оптические спектрометры и аналитический комплекс для исследования состава атмосферы, микроволновый радиометр, нейтронный и гамма-спектрометры для исследования поверхности, сейсмометр, магнитометры и эксперимент по определению собственного движения Марса для исследования внутреннего строения. Хотя проект ЭкзоМарс-2022 прекращен, научные задачи комплекса не утратили актуальности, а технические решения и разработки, реализованные в научной аппаратуре, представляют интерес и перспективны для дальнейших исследований Марса.
About the authors
О. И. Кораблев
Институт космических исследований Российской академии наук (ИКИ РАН)
Author for correspondence.
Email: korab@cosmos.ru
Russian Federation, Москва
Д. С. Родионов
Институт космических исследований Российской академии наук (ИКИ РАН)
Email: rodionov@cosmos.ru
Russian Federation, Москва
Л. М. Зеленый
Институт космических исследований Российской академии наук (ИКИ РАН)
Email: lzelenyi@cosmos.ru
Russian Federation, Москва
References
- Абрамов Н.Ф., Полянский И.В., Прохорова С.А., Эльяшев Я.Д. Результаты наземных испытаний телевизионной системы посадочной платформы КА ЭкзоМарс-2022 // Астрон. вестн. 2023. T. 57. № 5. С. 393–402.
- Авдуевский В.С., Аким Э.Л., Алешин В.И., Бородин Н.Ф., Кержанович В.В., Мальков Я.В., Маров М.Я., Морозов С.Ф., Рождественский М.К., Рябов О.Л., Субботин М.И., Суслов В.М. Черемухина З.П., Шкирина В.И. Атмосфера Марса в районе посадки спускаемого аппарата “Марс-6” (предварительные результаты) // Космич. исслед. 1975. Т. 13. С. 21–32.
- Головин Д.В., Мокроусов М.И., Митрофанов И.Г., Козырев А.С., Литвак М.Л., Малахов А.В., Никифоров С.Ю., Санин А.В., Бармаков Ю.Н., Боголюбов Е.П., Шоленинов С.Э., Юрков Д.И. Прибор АДРОН-ЛР для активного нейтронного зондирования состава лунного вещества // Астрон. вестн. 2021. T. 55. № 6. C. 542–549. (Golovin D.V., Mokrousov M.I., Mitrofanov I.G., Kozyrev A.S., Litvak M.L., Malakhov A.V., Nikiforov S. Yu., Sanin, A.B., Barmakov Y.N., Bogolubov E.P., Sholeninov S.E., Yurkov D.I. ADRON-LR instrument for active neutron sensing of the lunar matter composition // Sol. Syst. Res. 2021. V. 55. P. 529–536). https://doi.org/10.1134/S0038094621060046
- Евланов Е.Н., Завьялов М.А., Подколзин С.Н., Родионов Д.С., Тюрюканов П.М., Липатов А.Н., Экономов А.П. Газоразрядный анемометр // Датчики и системы. 2015. Т. 190. № 3. C. 47–50.
- Захаров А.В., Дольников Г.Г., Кузнецов И.А., Ляш А.Н., Esposito F., Molfese C., Arruego Rodríguez I., Seran E., Godefroy, M. и 38 соавторов. Пылевой комплекс для исследований динамики пылевых частиц в приповерхностной атмосфере Марса // Астрон. вестн. 2022. T. 56. № 6. C. 371–388. (Zakharov A.V., Dolnikov G.G., Kuznetsov I.A., Lyash A.N., Esposito F., Molfese C., Arruego Rodríguez I., Seran E., Godefroy, M., and 38 co-authors. Dust complex for studying the dust particle dynamics in the near-surface atmosphere of Mars // Sol. Syst. Res. 2022. V. 56. № 6. P. 351–368). https://doi.org/10.1134/S0038094622060065
- Захаров А.В., Дольников Г.Г., Кузнецов И.А., Ляш А.Н., Дубов А.Е., Афонин В.В., Бедняков С.А., Бычкова А.С., Грушин В.А., Докучаев И.В. и 10 соавторов. Прибор ПМЛ на посадочном аппарате Луна-25: плазменно-пылевые измерения в приповерхностной экзосфере // Астрон. вестн. 2021. Т. 55. № 6. С. 589–600. (Zakharov A.V., Dol’nikov G.G., Kuznetsov I.A., Lyash A.N., Dubov A.E., Afonin V.V., Bednyakov S.A., Bychkova A.S., Grushin V.A., Dokuchaev I.V., and 10 co-authors. PmL instrument onboard Luna-25 Lander: Plasma–dust measurements in the surface exosphere // Sol. Syst. Res. 2021. V. 55. № 6. P. 576–587). https://doi.org/10.1134/S0038094621060125
- Иванов М.А., Слюта Е.Н., Гришакина Е.А., Дмитровский А.А. Геоморфологический анализ потенциального места посадки КА “ЭкозоМарс” Oxia Planum // Астрон. вестн. 2020. Т. 54. № 1. С. 3–17. (Ivanov M.A., Slyuta E.N., Grishakina E.A., Dmitrovskii A.A. Geomorphological analysis of ExoMars candidate landing site Oxia Planum // Sol. Syst. Res. 2020. V. 54. № 1. P. 1–14). https://doi.org/10.1134/S0038094620010050
- Липатов А.Н., Экономов А.П., Макаров В.С., Лесных В.А., Горетов В.А., Захаркин Г.В., Зайцев М.А., Хлюстова Л.И., Антоненко С.А. Акселерометры метеокомплекса для исследования верхней атмосферы Марса // Астрон. вестн. 2023а. Т. 57. № 4. С. 333–341. (Lipatov A.N., Ekonomov A.P., Makarov V.S., Lesnykh V.A., Goretov V.A., Zakharkin G.V., Zaitsev M.A., Khlyustova L.I., Antonenko S.A. Accelerometers of the meteorological complex for the study of the upper atmosphere of Mars // Sol. Syst. Res. 2023a. V. 57. № 4. P. 349–357). https://doi.org/10.1134/S0038094623040081
- Липатов А.Н., Экономов А.П., Макаров В.С., Лесных В.А., Горетов В.А., Захаркин Г.В., Зайцев М.А., Хлюстова Л.И., Антоненко С.А. Датчики температуры и давления метеокомплекса для исследования атмосферы Марса // Астрон. вестн. 2023б. T. 57. № 4. С. 319–332. (Lipatov A.N., Ekonomov A.P., Makarov V.S., Lesnykh V.A., Goretov V.A., Zakharkin G.V., Zaitsev M.A., Khlyustova L.I., Antonenko S.A. Temperature and pressure sensors of the meteorological complex for the study of the Mars’s atmosphere // Sol. Syst. Res. 2023b. V. 57. № 4. P. 336–348). https://doi.org/10.1134/S003809462304007X
- Липатов А.Н., Ляш А.Н., Экономов А.П., Макаров В.С., Лесных В.А., Горетов В.А., Захаркин Г.В., Зайцев М.А., Хлюстова Л.И., Антоненко С.А., Родионов Д.С., Кораблев О.И. Лидар для исследования атмосферы Марса с поверхности // Астрон. вестн. 2023в. Т. 57. № 4. С. 342–356. (Lipatov A.N., Lyash A.N., Ekonomov A.P., Makarov V.S., Lesnykh V.A., Goretov V.A., Zakharkin G.V., Khlyustova L.I., Antonenko S.A., Rodionov D.S., Korablev O.I. LIDAR for investigation of the Martian atmosphere from the surface // Sol. Syst. Res. 2023c. V. 57. № 4. P. 358–372). https://doi.org/10.1134/S0038094623040093
- Манукин А.Б., Казанцева О.С., Калинников И.И., Матюнин В.П., Саякина Н.Ф., Тоньшев А.К., Черногорова Н.А. Сейсмометр для наблюдений на Марсе // Космич. исслед. 2021. Т. 59. № 5. С. 418–427. (Manukin, A.B., Kazantseva, O.S., Kalinnikov, I.I., Matyunin V.P., Sayakina N.F., Ton’shev A.K., Chernogorova N.A. A Seismometer for Observations on Mars // Cosmic Res. 2021. V. 59. P. 366–375. https://doi.org/10.1134/S0010952521050087
- Москатиньев И.В., Иванов А.С., Алексашкин С.Н., Острешко Б.А. Космический аппарат “ЭкзоМарс-2022” // Российский сегмент международной космической экспедиции “ЭкзоМарс- 2022” / Ред.: Ефанов В.В., Карчаев Х.Ж. Химки: Научно-производственное объединение им. С.А. Лавочкина, 2020а. Т. 1. С. 52–56.
- Москатиньев И.В., Иванов А.С., Алексашкин С.Н., Острешко Б.А. Посадочный Модуль “ЭкзоМарс-2022” // Российский сегмент международной космической экспедиции “ЭкзоМарс- 2022” / Ред.: Ефанов В.В., Карчаев Х.Ж. Химки: Научно-производственное объединение им. С.А. Лавочкина, 2020б. Т. 1. С. 100–111.
- Хоркин В.С., Федорова А.А., Доброленский Ю.С., Кораблев О.И., Вязоветский Н.А., Дзюбан И.А., Сапгир А.Г., Титов А.Ю., Толедо Д., Помро Ж.-П., Ранну П. Прибор ODS миссии ЭкзоМарс-2022: моделирование и наземные полевые измерения // Астрон. вестн. 2023. T. 57. № 4. С. 307–318. (Khorkin V.S., Fedorova A.A., Dobrolenskiy Y.S., Korablev O.I., Vyazovetskiy N.A., Dzyuban I.A., Sapgir A.G., Titov A. Yu., Toledo D., Pommereau J.-P., Rannou P. ExoMars-2022 mission ODS instrument: Modeling and ground field measurements // Sol. Syst. Res. 2023. V. 57. P. 324–335). https://doi.org/10.1134/S0038094623040056
- Aboudan A., Colombatti G., Bettanini C., Ferri F., Lewis S., Van Hove B., Karatekin O., Debei S. ExoMars 2016 Schiaparelli Module trajectory and atmospheric profiles reconstruction. Analysis of the on-board inertial and radar measurements // Space Sci. Rev. 2018. V. 214. id. 97. https://doi.org/10.1007/s11214-018-0532-3
- Acuna M.H., Connerney J.E.P., Ness N.F., Lin R.P., Mitchell D., Carlson C.W., McFadden J., Anderson K.A., Rème H., Mazelle C., Vignes D., Wasilewski P., Cloutier P. Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment // Science. 1999. V. 284. id. 790. https://doi.org/10.1126/science.284.5415.790.
- Alday J., Trokhimovskiy A., Irwin P.G.J., Wilson C.F., Montmessin F., Lefévre F., Fedorova A.A., Belyaev D.A., Olsen K.S., Korablev O., and 6 co-authors. Isotopic fractionation of water and its photolytic products in the atmosphere of Mars // Nature Astron. 2021a. V. 5. P. 943–950. https://doi.org/10.1038/s41550-021-01389-x
- Alday J., Wilson C.F., Irwin P.G.J., Trokhimovskiy A., Montmessin F., Fedorova A.A., Belyaev D.A., Olsen K.S., Korablev O., Lefévre F., and 4 co-authors. Isotopic composition of CO2 in the atmosphere of Mars: Fractionation by diffusive separation observed by the ExoMars Trace Gas Orbiter // J. Geophys. Res.: Planets. 2021b. V. 126. id. e06992. https://doi.org/10.1029/2021JE006992
- Anderson D.L., Miller W.F., Duennebier F.K., Toksöz M.F., Kovach R.L., Knight T.C.D., Lazarewicz A.R., Miller W.F., Nakamura Y., Sutto G. The Viking seismic experiment // Science. 1976. V. 194. № 4721. P. 1318–1321. https://doi.org/10.1126/science.194.4271.1318
- Arruego I., Apéstigue V., Jiménez-Martín J., Martínez-Oter J., Álvarez-Ríos F.J., González-Guerrero M., Rivas J., Azcue J., Martín I., Toledo D., and 3 co-authors. DREAMS-SIS: The Solar Irradiance Sensor on-board the ExoMars 2016 lander // Adv. Space Res. 2017. V. 60. P. 103–120. https://doi.org/10.1016/j.asr.2017.04.002
- Arumov G.P., Bukharin A.V., Linkin V.M., Lipatov A.N., Lyash A.N., Makarov V.S., Pershin S.M., Tiurin A.V. Compact aerosol lidar for Martian atmosphere monitoring according to the NASA Mars Surveyor Program // ‘98 Proc. SPIE. 1999. V. 3688. P. 494. https://doi.org/10.1117/12.337558
- Atreya S.K., Wong A.-S., Renno N.O., Farrell W.M, Delory G.T., Sentman D.D., Cummer S.A., Marshall J.R., Rafkin S.C.R., Catling D.C. Oxidant enhancement in Martian dust devils and storms: Implications for life and habitability // Astrobiology. 2006. V. 6. P. 439–450. https://doi.org/10.1089/ast.2006.6.439
- Atreya S.K., Trainer M.G., Franz H.B., Wong M.H., Manning H.L.K., Malespin C.A., Mahaffy P.R., Conrad P.G., Brunner A.E., Leshin L.A., and 5 co-authors. Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss // Geophys Res. Lett. 2013. V. 40. P. 5605–5609. https://doi.org/10.1002/2013GL057763
- Blanchard R.C., Desai P.N. Mars Phoenix entry, descent, and landing trajectory and atmosphere reconstruction // J. Spacecraft and Rockets. 2011. V. 48. P. 809–821. https://doi.org/10.2514/1.46274
- Chamberlain T.E., Cole H.L., Dutton R.G., Greene G.C., Tillman J.E. Atmospheric measurements on Mars: the Viking Meteorology Experiment // Am. Meteorol. Soc. Bull. 1976. V. 57. P. 1094. https://doi.org/10.1175/1520-0477(1976)057<1094: AMOMTV>2.0.CO;2
- Ciarletti V., Clifford S., Plettemeier D. Le Gall A., Hervé Y., Dorizon S., Quantin-Nataf C., Benedix W.-S., Schwenzer S., Pettinelli E., and 7 co-authors. The WISDOM radar: Unveiling the subsurface beneath the ExoMars Rover and identifying the best locations for drilling // Astrobiology. 2017. V. 17. P. 565–584. https://doi.org/10.1089/ast.2016.1532.
- Connerney J.E.P., Espley J.R., DiBraccio G.A., Gruesbeck J.R., Oliversen R.J., Mitchell D.L., Halekas J., Mazelle C., Brain D., Jakosky B.M. First results of the MAVEN magnetic field investigation // Geophys. Res. Lett. 2015. V. 42. P. 8819–8827. https://doi.org/10.1002/2015GL065366
- Conrad P.G., Malespin C.A., Franz H.B., Pepin R.O., Trainer M.G., Schwenzer S.P., Atreya S.K., Freissinet C., Jones J.H., Manning H., and 5 co-authors. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory // Earth and Planet. Sci. Lett. 2016. V. 454. P. 1–9 https://doi.org/10.1016/j.epsl.2016.08.028
- Daerden F., Whiteway J A., Neary L., Komguem L., Lemmon M.T., Heavens N.G., Cantor B.A., Hébrard E., Smith M.D. A solar escalator on Mars: Self-lifting of dust layers by radiative heating // Geophys. Res. Lett. 2015. V. 42. P. 7319–7326. https://doi.org/10.1002/2015GL064892
- Dehant V., Le Maistre S., Baland R.-M., Bergeot N., Karatekin Ö., Péters M.-J., Rivoldini A., Lozano L.R., Temel O., Van Hoolst T., and 11 co-authors. The radioscience LaRa instrument onboard ExoMars 2020 to investigate the rotation and interior of Mars // Planet. and Space Sci. 2020. V. 180. id. 104776. https://doi.org/10.1016/j.pss.2019.104776
- Díaz Michelena M., Rivero M.Á., Romero S.F., Adeli S., Oliveira J.S., Henrich C., Aspás A., Parrondo M. Anisotropic MagnetoResistance (AMR) instrument to study the Martian magnetic environment from the surface: Expected scientific return // Sol. Syst. Res. 2023. V. 57. P. 307–323. https://doi.org/10.1134/S003809462304010X
- Durry G., Li J.S., Vinogradov I., Titov A., Joly L., Cousin J., Decarpenterie T., Amarouche N., Liu X., Parvitte B., Korablev O., Gerasimov M., Zéninari V. Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission // Appl. Phys. B. 2010. V. 99. P. 339–351. https://doi.org/10.1007/s00340-010-3924-y
- Ehresmann B., Zeitlin C., Hassler D.M., Guo J., Wimmer-Schweingruber R.F., Berger T., Matthiä D., Reitz G. The Martian surface radiation environment at solar minimum measured with MSL/RAD // Icarus. 2023. V. 393. id. 115035. https://doi.org/10.1016/j.Icarus.2022.115035
- Esposito F., Colangeli L., Della Corte V., Molfese C., Palumbo P., Ventura S., Merrison J., Nørnberg P., Rodriguez-Gomez J.F., Lopez-Moreno J.J., and 7 co-authors. MEDUSA: Observation of atmospheric dust and water vapor close to the surface of Mars // Int. J. Mars Sci. Expl. 2011. V. 6. P. 1–12.
- Esposito F., Debei S., Bettanini C., Molfese C., Arruego Rodríguez I., Colombatti G., Harri A.-M., Montmessin F., Wilson C., Aboudan A., and 58 co-authors. The DREAMS experiment onboard the Schiaparelli Module of the ExoMars 2016 mission: Design, performances and expected results // Space Sci. Rev. 2018. V. 214. id. 103. https://doi.org/10.1007/s11214-018-0535-0
- Evlanov E.N., Zubkov B.V., Nenarokov D.F., Linkin V.M., Zavjalov M.A., Tyuryukanov P.M. Gas-discharge anemometer for the investigation of flow dynamics in rarefied gas media // Cosmic Res. 2001. V. 39. № 5. P. 453–458.
- Ferri F., Karatekin Ö., Lewis S.R., Forget F., Aboudan A., Colombatti G., Bettanini C., Debei S., Van Hove B., Dehant V., and 18 co-authors. ExoMars Atmospheric Mars Entry and Landing Investigations and Analysis (AMELIA) // Space Sci. Rev. 2019. V. 215. id. 8. https://doi.org/10.1007/s11214–019–0578-x
- Folkner W.M., Yoder C.F., Yuan D.N., Standish E.M., Preston R.A. Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder // Science. 1997. V. 278. P. 1749–1752. https://doi.org/10.1126/science.278.5344.1749
- Forget F., Hourdin F., Fournier R., Hourdin C., Talagrand O., Collins M., Lewis S.R., Read P.L., Huot J.-P. Improved general circulation models of the Martian atmosphere from the surface to above 80 km // J. Geophys. Res.: Planets. 1999. V. 104. P. 24155–24175. https://doi.org/10.1029/1999JE001025
- Franz H.B., Mahaffy P.R., Webster C.R., Flesch G.J., Raaen E., Freissinet C., Atreya S.K., House C.H., McAdam A.C., Knudson C.A., and 12 co-authors. Indigenous and exogenous organics and surface-atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater // Nature Astron. 2020. V. 4. P. 526–532. https://doi.org/10.1038/s41550-019-0990-x
- Gerasimov M.V., Sapgir A G., Zaitsev M.A., Aseev S.A., Vinogradov I.I., Szopa C., Coll P., Cabane M., Coscia D., Goesmann F., Wurz P., Lasi D., Tulej M. The Martian gas-analytic package for the landing platform experiments of the ExoMars 2018 // Proc. LPI. 2014. id. 1242. https://www.hou.usra.edu/meetings/lpsc2014/pdf/1242.pdf
- Giardini D., Lognonné P., Banerdt W.B., Pike W.T., Christensen U., Ceylan S., Clinton J.F., van Driel M., Stähler S.C., Böse M., and 53 co-authors. The seismicity of Mars // Nature Geosci. 2020 V. 13. P. 205–212. https://doi.org/10.1038/s41561-020-0539-8
- Gómez-Elvira J., Armiens C., Castañer L., Domínguez M., Genzer M., Gómez F., Haberle R., Harri A.-M., Jiménez V., Kahanpää H., and 29 co-authors. REMS: The environmental sensor suite for the Mars Science Laboratory rover // Space Sci. Rev. 2012. V. 170. P. 583–640. https://doi.org/10.1007/s11214-012-9921-1
- Gudkova T.V., Lognonné P., Zharkov V.N., Raevsky S.N. On the scientific aims of the MISS seismic experiment // Sol. Syst. Res. 2014. V. 48. P. 11–12. https://doi.org/10.1134/S0038094614010043
- Guzewich S.D., Fedorova A.A., Kahre M.A., Toigo A.D. Studies of the 2018/Mars Year 34 planet-encircling dust storm // J. Geophys. Res.: Planets. 2020. V. 125 id. e06700. https://doi.org/10.1029/2020JE006700
- Harri A.-M., Linkin V., Polkko J., Marov M., Pommereau J.-P., Lipatov A., Siili T., Manuilov K., Lebedev V., Lehto A., and 10 co-authors. Meteorological observations on Martian surface: Met-packages of Mars-96 small stations and penetrators planet // Space. Sci. 1998. V. 46. P. 779–793. https://doi.org/10.1016/S0032-0633(98)00012-9
- Harri A.-M., Pichkadze K., Zeleny L., Vazquez L., Schmidt W., Alexashkin S., Korablev O., Guerrero H., Heilimo J., Uspensky M., and 22 co-authors. The MetNet vehicle: a lander to deploy environmental stations for local and global investigations of Mars // Geophys. Instr., Method and Data Syst. 2017. V. 6. P. 103–124. https://doi.org/10.5194/gi-6-103-2017
- Hartogh P., Medvedev A.S., Kuroda T., Saito R., Villanueva G., Feofilov A.G., Kutepov A.A., Berger U. Description and climatology of a new general circulation model of the Martian atmosphere // J. Geophys. Res.: Planets. 2005. V. 110. id. E11008. https://doi.org/10.1029/2005JE002498
- Hassler D.M., Zeitlin C., Wimmer-Schweingruber R.F., Böttcher S., Martin C., Andrews J., Böhm E., Brinza D.E., Bullock M.A., Burmeister S., and 15 co-authors. The Radiation Assessment Detector (RAD) investigation // Space Sci. Rev. 2012. V. 170. P. 503–558. https://doi.org/10.1007/s11214-012-9913-1
- Hassler D.M., Zeitlin C., Wimmer-Schweingruber R.F., Ehresmann B., Rafkin S., Eigenbrode J.L., Brinza D.E., Weigle G., Böttcher S., Böhm E., and 438 co-authors. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity Rover // Science. 2014. V. 343. № 6169. id. 1244797. https://doi.org/10.1126/science.1244797
- Hess S.L., Ryan J.A., Tillman J.E., Henry R.M., Leovy C.B. The annual cycle of pressure on Mars measured by Viking Landers 1 and 2 // Geophys. Res. Lett. 1980. V. 7. P. 197–200. https://doi.org/10.1029/GL007i003p00197
- Hofer L., Wurz P., Buch A., Cabane M., Coll P., Coscia D., Gerasimov M., Lasi D., Sapgir A., Szopa C., Tulej M. Prototype of the gas chromatograph-mass spectrometer to investigate volatile species in the lunar soil for the Luna-Resurs mission // Planet. and Space Sci. 2015. V. 111. P. 126–133. https://doi.org/10.1016/j.pss.2015.03.027
- Holstein-Rathlou C., Maue A., Withers P. Atmospheric studies from the Mars Science Laboratory entry, descent and landing atmospheric structure reconstruction // Planet. and Space Sci. 2016. V. 120. P. 15–23. https://doi.org/10.1016/j.pss.2015.10.015
- Huang Q., Schmerr N.C., King S.D., Banerdt W.B. Seismic detection of a deep mantle discontinuity within Mars by InSight // Proc. Nat. Acad. Sci. 2022. V. 119. id. e2204474119. https://doi.org/10.1073/pnas.2204474119
- Jakosky B.M., Zent A.P., Zurek R.W. The Mars water cycle: Determining the role of exchange with the regolith // Icarus. 1997. V. 130. P. 87–95. https://doi.org/10.1006/Icarus.1997.5799
- Jimenez-Martín J., García Menéndez E., Gonzalez-Guerrer Bartolomé M., Martinez-Oter J., Apéstigue-Palacio V., de Mingo J.R., Rivas J., Serrano F., Montalvo S., García-Llases A., Arruego I. Solar Irradiance Sensor of RDM ExoMars 2022 calibration // Proc. SPIE. 2023. V. 12777. id. 1277774. https://doi.org/10.1117/12.2691378
- Johnson C.L., Mittelholz A., Langlais B., Russell C.T., Ansan V., Banfield D., Chi P.J., Fillingim M.O., Forget F., Haviland H.F., and 14 co-authors. Crustal and time-varying magnetic fields at the InSight landing site on Mars // Nature Geosci. 2020. V. 13. P. 199–204. https://doi.org/10.1038/s41561-020-0537-x
- Kahre M., Murphy J., Newman C., Wilson R., Cantor B., Lemmon M., Wolff M. The Mars dust cycle // The Atmosphere and Climate of Mars / Eds: Haberle R., Clancy R., Forget F., Smith M., Zurek R. Cambridge: Cambridge Univ. Press, 2017. P. 295–337. https://doi.org/10.1017/9781139060172.010
- Kahre M.A., Haberle R.M., Wilson R.J., Urata R.A., Steakley K.E., Brecht A.S., Bertrand T., Kling A., Batterson C.M., Hartwick V., Harman C.E., Gkouvelis L. The NASA Ames legacy Mars global climate model: Radiation code error correction and new baseline water cycle simulation // Icarus. 2023. V. 400. id. 115561. https://doi.org/10.1016/j.Icarus.2023.115561
- Karlgaard C.D., Korzun A.M., Schoenenberger M., Bonfiglio E.P., Kass D.M., Grover M.R. Mars InSight entry, descent, and landing trajectory and atmosphere reconstruction // J. Spacecraft and Rockets. 2021. V. 58. P. 865–878. https://doi.org/10.2514/1.A34913
- Karlgaard C.D., Schoenenberger M., Dutta S., Way D.W. Mars entry, descent, and landing instrumentation 2 trajectory, aerodynamics, and atmosphere reconstruction // J. Spacecraft and Rockets. 2023. V. 60. P. 199–214. https://doi.org/10.2514/1.A35440
- Kawamura T., Clinton J.F., Zenhäusern G., Ceylan S., Horleston A.C., Dahmen N.L., Duran C., Kim D., Plasman M., Stähler S.C., and 8 co-authors. S1222a – the largest Marsquake detected by InSight // Geophys. Res. Lett. 2023. V. 50. id. e2022GL101543. https://doi.org/10.1029/2022GL101543
- Knapmeyer-Endrun B., Panning M.P., Bissig F., Rakshit J., Khan A., Kim D., Lekić V., Tauzin B., Tharimena S., Plasman M., and 29 co-authors. Thickness and structure of the Martian crust from InSight seismic data // Science. 2021. V. 373. № 6553. P. 438–443. https://doi.org/10.1126/science.abf8966
- Knutsen E.W., Montmessin F., Verdier L., Lacombe G., Lefèvre F., Ferron S., Giuranna M., Wolkenberg P., Fedorova A., Trokhimovskiy A., Korablev O. Water vapor on Mars: A refined climatology and constraints on the near-surface concentration enabled by synergistic retrievals // J. Geophys. Res.: Planets. 2022. V. 127. id. e07252. https://doi.org/10.1029/2022JE007252
- Kok J.F., Renno N.O. Electrification of wind-blown sand on Mars and its implications for atmospheric chemistry // Geophys. Res. Lett. 2009. V. 36. № 5. id. L05202. https://doi.org/10.1029/2008GL036691
- Kolmasova I., Santolik O., Skalsky A. Anticipated plasma wave measurement onboard ExoMars 2020 surface platform // Proc. 8th Int. Workshop on planets, solar and heliospheric radio emissions, Graz, Austria, October 25–27, 2016. 2017. P. 487. https://doi.org/10.1553/PRE8s487
- Konopliv A.S., Park R.S., Folkner W.M. An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data // Icarus. 2016. V. 274. P. 253–260. https://doi.org/10.1016/j.icarus.2016.02.052
- Konopliv A.S., Park R.S., Rivoldini A., Baland R.-M., Le Maistre S., Van Hoolst T., Yseboodt M., Dehant V. Detection of the Chandler wobble of Mars from orbiting spacecraft // Geophys. Res. Lett. 2020. V. 47. id. e90568. https://doi.org/10.1029/2020GL090568
- Korablev O., Montmessin F., Trokhimovskiy A., Fedorova A.A., Shakun A.V., Grigoriev A.V., Moshkin B.E., Ignatiev N.I., Forget F., Lefèvre F., and 64 co-authors. The Atmospheric Chemistry Suite (ACS) of three spectrometers for the ExoMars 2016 Trace Gas Orbiter // Space Sci. Rev. 2018. V. 214. id. 7. https://doi.org/10.1007/s11214-017-0437-6
- Kuchynka P., Folkner W.M., Konopliv A.S., Parker T.J., Park R.S., Le Maistre S., Dehant V. New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover // Icarus. 2014. V. 229. P. 340–347. https://doi.org/10.1016/j.icarus.2013.11.015
- Kurgansky M.V. Statistical distribution of atmospheric dust devils on Earth and Mars // Boundary-Layer Meteorol. 2022. V. 184. P. 381–400. https://doi.org/10.1007/s10546-022-00713-w
- Langlais B., Thébault E., Houliez A., Purucker M.E. A new model of the crustal magnetic field of Mars using MGS and MAVEN // J. Geophys. Res.: Planets. 2019. V. 124. P. 1542–1569.
- Le Maistre S., Péters M.-J., Marty J.-C., Dehant V. On the impact of the operational and technical characteristics of the LaRa experiment on the determination of Mars’ nutation // Planet and Space Sci. 2020. V. 180. id. 104766 https://doi.org/10.1016/j.pss.2019.104766
- Lefèvre F., Trokhimovskiy A., Fedorova A., Baggio L., Lacombe G., Määttänen A., Bertaux J.-L., Forget F., Millour E., Venot O., Bénilan Y., Korablev O., Montmessin F. Relationship between the ozone and water vapor columns on Mars as observed by SPICAM and calculated by a Global Climate Model // J. Geophys. Res.: Planets. 2021. V. 126. id. e06838. https://doi.org/10.1029/2021JE006838
- Linkin V., Harri A.-M., Lipatov A., Belostotskaja K., Derbunovich B., Ekonomov A., Khloustova L., Kremnev R., Makarov V., Martinov B., and 11 co-authors. A sophisticated lander for scientific exploration of Mars: Scientific objectives and implementation of the Mars-96 small station // Planet. and Space Sci. 1998. V. 46. P. 717–737. https://doi.org/10.1016/S0032-0633(98)00008-7
- Liu J., Li C., Zhang R., Rao W., Cui X., Geng Y., Jia Y., Huang H., Ren X., Yan W., and 13 co-authors. Geomorphic contexts and science focus of the Zhurong landing site on Mars // Nat. Astron. 2022. V. 6. P. 65–71. https://doi.org/10.1038/s41550-021-01519-5
- Lognonné P., Zharkov V.N., Karczewski J.F., Romanowicz B., Menvielle M., Poupinet G., Brient B., Cavoit C., Desautez A., Dole B., et al. The seismic OPTIMISM experiment // Planet. and Space Sci. 1998. V. 46. P. 739–747. https://doi.org/10.1016/S0032-0633(98)00009-9
- Lognonné P., Giardini D., Banerdt B., Gagnepain-Beyneix J., Mocquet A., Spohn T., Karczewski J.F., Schibler P., Cacho S., Pike W.T., and 5 co-authors. The NetLander very broad band seismometer // Planet. and Space Sci. 2000. V. 48. P. 1289–1302. https://doi.org/10.1016/S0032-0633(00)00110-0
- Lognonné P., Banerdt W.B., Giardini D., Pike W.T., Christensen U., Laudet P., de Raucourt S., Zweifel P., Calcutt S., Bierwirth M., and 161 co-authors. SEIS: InSight’s seismic experiment for internal structure of Mars // Space Sci. Rev. 2019. V. 215. id. 12. https://doi.org/10.1007/s11214-018-0574-6
- Magalhães J.A., Schofield J.T., Seiff A. Results of the Mars Pathfinder atmospheric structure investigation // J. Geophys. Res.: Planets. 1999. V. 104. P. 8943–8955. https://doi.org/10.1029/1998JE900041
- Mahaffy P.R., Webster C.R., Atreya S.K., Franz H., Wong M., Conrad P.G., Harpold D., Jones J.J., Leshin L.A., Manning H., and 439 co-authors. Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover // Science. 2013. V. 341. № 6143. P. 263–266. https://doi.org/10.1126/science.1237966
- Malakhov A.V., Mitrofanov I.G., Golovin D.V., Litvak M.L., Sanin A.B., Djachkova M.V., Lukyanov N.V. High resolution map of water in the Martian regolith observed by FREND neutron telescope onboard ExoMars TGO // J. Geophys. Res.: Planets. 2022. V. 127. id. e07258. https://doi.org/10.1029/2022JE007258
- Manukin A.B., Gorshkov A.N., Shlyk A.F. GRAS-F seismogravimeter for measuring gravity-inertial fields on the surface of Phobos // Sol. Syst. Res. 2010. V. 44. P. 417–422. https://doi.org/10.1134/S0038094610050096
- Martin R.L., Kok J.F. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress // Science Adv. 2017. V. 3. id. e1602569. https://doi.org/10.1126/sciadv.1602569
- Martín-Torres J., Zorzano M.-P., Soria-Salinas Á., Nazarious M.I., Konatham S., Mathanlal T., Ramachandran A.V., Ramírez-Luque J.-A., Mantas-Nakhai R. The HABIT (HabitAbility: Brine Irradiation and Temperature) environmental instrument for the ExoMars 2022 Surface Platform // Planet. and Space Sci. 2020. V. 190. id. 104968. https://doi.org/10.1016/j.pss.2020.104968
- Mitrofanov I.G., Kozyrev A.S., Lisov D.I., Litvak M.L., Malakhov A.A., Mokrousov M.I., Benkhoff J., Owens A., Schulz R., Quarati F. The Mercury Gamma-Ray and Neutron Spectrometer (MGNS) onboard the Mercury Planetary Orbiter of the BepiColombo mission: Design updates and first measurements in space // Space Sci. Rev. 2021. V. 217. id. 67. https://doi.org/10.1007/s11214-021-00842-7
- Mitrofanov I.G., Litvak M.L., Nikiforov S.Y., Jun I., Bobrovnitsky Y.I., Golovin D.V., Grebennikov A.S., Fedosov F.S., Kozyrev A.S., Lisov D.I., and 8 co-authors. The ADRON-RM instrument onboard the ExoMars rover // Astrobiology. 2017. V. 17. P. 585–594. https://doi.org/10.1089/ast.2016.1566
- Mitrofanov I.G., Litvak M.L., Varenikov A.B., Barmakov Y.N., Behar A., Bobrovnitsky Y.I., Bogolubov E.P., Boynton W.V., Harshman K., Kan E., and 13 co-authors. Dynamic Albedo of Neutrons (DAN) experiment onboard NASA’s Mars Science Laboratory // Space Sci. Rev. 2012. V. 170. P. 559–582. https://doi.org/10.1007/s11214-012-9924-y
- Mitrofanov I., Malakhov A., Djachkova M., Golovin D., Litvak M., Mokrousov M., Sanin A., Svedhem H., Zelenyi L. The evidence for unusually high hydrogen abundances in the central part of Valles Marineris on Mars // Icarus. 2022a. V. 374. id. 114805. https://doi.org/10.1016/j.Icarusus.2021.114805
- Mitrofanov I.G., Nikiforov S.Y., Djachkova M.V., Lisov D.I., Litvak M.L., Sanin A.B., Vasavada A.R. Water and chlorine in the Martian subsurface along the traverse of NASA’s Curiosity rover: 1. DAN measurement profiles along the traverse // J. Geophys. Res.: Planets. 2022b. V. 127. id. e2022JE007327. https://doi.org/10.1029/2022JE007327
- Mitrofanov I., Malakhov A., Bakhtin B., Golovin D., Kozyrev A., Litvak M., Mokrousov M., A. Sanin, Tretyakov V., Vostrukhin A., and 16 co-authors. Fine Resolution Epithermal Neutron Detector (FREND) onboard the ExoMars Trace Gas Orbiter // Space Sci. Rev. 2018. V. 214. id. 86. https://doi.org/10.1007/s11214-018-0522-5
- Mittelholz A., Johnson C.L., Thorne S.N., Joy S., Barrett E., Fillingim M.O., Forget F., Langlais B., Russell C.T., Spiga A., Smrekar S., Banerdt W.B. The origin of observed magnetic variability for a sol on Mars from InSight // J. Geophys. Res.: Planets. 2020. V. 125. № 9. id. e2020JE006505. https://doi.org/10.1029/2020JE006505
- Mokrousov M.I., Golovin D.V., Mitrofanov I.G., Anikin A.A., Kozyrev A.S., Litvak M.L., Malakhov A.V., Nikiforov S.Y., Pekov A.N., Sanin A.B., Tretyakov V.I. ADRON: Active Spectrometer of Neutron and Gamma Radiation of the Moon and Mars // Phys. Particles Nuclei Lett. 2022. V. 19. P. 744–764. https://doi.org/10.1134/S1547477122060164
- Montabone L., Forget F., Millour E., Wilson R.J., Lewis S.R., Cantor B., Kass D., Kleinböhl A., Lemmon M.T., Smith M.D., Wolff M.J. Eight-year climatology of dust optical depth on Mars // Icarus. 2015. V. 251. P. 65–95. https://doi.org/10.1016/j.icarus.2014.12.034
- Montmessin F., Smith M., Langevin Y., Mellon M., Fedorova A. The water cycle // The Atmosphere and Climate of Mars / Eds: Haberle R., Clancy R., Forget F., Smith M., Zurek R. Cambridge: Cambridge Univ. Press, 2017. P. 338–373. https://doi.org/10.1017/9781139060172.011
- Musiolik G., Kruss M., Demirci T., Schrinski B., Teiser J., Daerden F., Smith M.D., Neary L., Wurm G. Saltation under Martian gravity and its influence on the global dust distribution // Icarus. 2018. V. 306. P. 25–31. https://doi.org/10.1016/j.Icarusus.2018.01.007
- Navarro T., Madeleine J.-B., Forget F., Spiga A., Millour E., Montmessin F., Määttänen A. Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds // J. Geophys. Res.: Planets. 2014. V. 119. P. 1479–1495. https://doi.org/10.1002/2013JE004550
- Neakrase L.D.V., Balme M.R., Esposito F., Kelling T., Klose M., Kok J.F., Marticorena B., Merrison J., Patel M., Wurm G. Particle lifting processes in dust devils // Space Sci. Rev. 2016. V. 203. P. 347–376. https://doi.org/10.1007/s11214-016-0296-6
- Neary L., Daerden F. The GEM–Mars general circulation model for Mars: Description and evaluation // Icarus. 2018. V. 300. P. 458–476. https://doi.org/10.1016/j.Icarus.2017.09.028
- Newman C.E., Richardson M.I. The impact of surface dust source exhaustion on the Martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF General Circulation Model // Icarus. 2015. V. 257. 47–87. https://doi.org/10.1016/j.Icarusus.2015.03.030
- Pavlov A.K., Shelegedin V.N., Vdovina M.A., Pavlov A.A. Growth of microorganisms in Martian-like shallow subsurface conditions: Laboratory modelling // Int. J. Astrobiol. 2010. V. 9. P. 51–58. https://doi.org/10.1017/S1473550409990371
- Péters M.-J., Le Maistre S., Yseboodt M., Marty J.-C., Rivoldini A., Van Hoolst T., Dehant V. LaRa after RISE: Expected improvement in the Mars rotation and interior models // Planet. and Space Sci. 2020. V. 180. № 4. id. 104745. https://doi.org/10.1016/j.pss.2019.104745
- Petrosyan A., Galperin B., Larsen S.E., Lewis S.R., Määttänen A., Read P.L., Renno N., Rogberg L.P.H.T., Savijärvi H., Siili T., Spiga A., Toigo A., Vázquez L. The Martian atmospheric boundary layer // Rev. Geophys. 2011. V. 49. № 3. id. RG3005. https://doi.org/10.1029/2010RG000351
- Read P., Galperin B., Larsen S., Lewis S.R., Määttänen A., Petrosyan A., Renno N., Savijärvi H., Siili T., Spiga A. The Martian planetary boundary layer // The Atmosphere and Climate of Mars / Eds: Haberle R., Clancy R., Forget F., Smith M., Zurek R. Cambridge: Cambridge Univ. Press, 2017. P. 172–202. https://doi.org/10.1017/9781139060172.007
- Renno N.O., Wong A.-S., Atreya S.K., de Pater I., Roos-Serote M. Electrical discharges and broadband radio emission by Martian dust devils and dust storms // Geophys. Res. Lett. 2003. V. 30. id. 2140. https://doi.org/10.1029/2003GL017879
- Rodin A., Vinogradov I., Zenevich S., Spiridonov M., Gazizov I., Kazakov V., Meshcherinov V., Golovin I., Kozlova T., Lebedev Y., and 11 co-authors. Martian Multichannel Diode Laser Spectrometer (M-DLS) for in-situ atmospheric composition measurements on Mars onboard ExoMars-2022 Landing Platform // Applied Sci. 2020. V. 10. № 24. id. 8805. https://doi.org/10.3390/app10248805
- Rodriguez-Manfredi J.A., de la Torre Juárez M., Alonso A., Apéstigue V., Arruego I., Atienza T., Banfield D., Boland J., Carrera M.A., Castañer L., and 76 co-authors. The Mars Environmental Dynamics Analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission // Space Sci. Rev. 2021. V. 217. id. 48. https://doi.org/10.1007/s11214-021-00816-9
- Sagan C., Bagnold R.A. Fluid transport on Earth and Aeolian transport on Mars // Icarus. 1975. V. 26. 209–218. https://doi.org/10.1016/0019-1035(75)90080-9
- Seiff A., Kirk D.B. Structure of the atmosphere of Mars in summer at mid-latitudes // J. Geophys. Res. 1977. V. 82. P. 4364–4378. https://doi.org/10.1029/JS082i028p04364
- Seiff A., Tillman J.E., Murphy J.R., Schofield J.T., Crisp D., Jeffrey R.B., LaBaw C., Mahoney C., Mihalov J.D., Wilson G.R., Haberle R. The atmosphere structure and meteorology instrument on the Mars Pathfinder lander // J. Geophys. Res.: Planets. 1997. V. 102. P. 4045–4056. https://doi.org/10.1029/96JE03320
- Semkova J., Dachev T., Matviichuk Y., Koleva R., Tomov B., Baynov P., Petrov V., Nguyen V., Siegrist M., Chene J., d’Uston C., Cotin F. Dosimetric investigations on Mars-96 mission // Adv. Space Res. 1994. V. 14. P. 707–710. https://doi.org/10.1016/0273-1177(94)90530-4
- Semkova J., Koleva R., Benghin V., Dachev T., Matviichuk Y., Tomov B., Krastev K., Maltchev S., Dimitrov P., Bankov N., and 10 co-authors. Results from radiation environment measurements aboard ExoMars Trace Gas Orbiter in Mars science orbit in May 2018-December 2019 // Icarus. 2021. V. 361. id. 114264. https://doi.org/10.1016/j.Icarusus.2020.114264
- Shakun A., Korablev O., Moshkin B., Grigoriev A., Ignatiev N., Maslov I., Sazonov O., Patsaev D., Kungurov A., Santos-Skripko A., and 7 co-authors. Fourier transform spectrometers for remote sensing of planetary atmospheres and surfaces // CEAS Space J. 2017. V. 9. P. 399–409. https://doi.org/10.1007/s12567-017-0176-2
- Shakun A., Ignatiev N., Luginin M., Grigoriev A., Moshkin B., Grassi D., Arnold G., Maturilli A., Kungurov A., Makarov V., and 11 co-authors. ACS/TIRVIM: Calibration and first results // Proc. SPIE. 2018. V. 10765. id. 107650E. https://doi.org/10.1117/12.2322163
- Shakun A., Kungurov A., Sazonov O., Stupin I., Arnold G., Grigoriev A., Korablev O. Two-coordinate pointing and tracking system for an infrared Fourier-transform spectrometer // Proc. SPIE. 2019a. V. 11128. id. 111280H. https://doi.org/10.1117/12.2535444
- Shakun A., Santos-Skripko A., Sazonov O., Maslov I., Ignatiev N., Stupin I., Arnold G., Grigoriev A., Korablev O. Interferometer with single-axis robot: design, alignment and performance // Proc. SPIE. 2019b. V. 11128. id. 111280G. https://doi.org/10.1117/12.2535436
- Smith M.D., Wolff M.J., Spanovich N., Ghosh A., Banfield D., Christensen P.R., Landis G.A., Squyres S.W. One Martian year of atmospheric observations using MER Mini-TES // J. Geophys. Res.: Planets. 2006. V. 111. id. E12S13. https://doi.org/10.1029/2006JE002770
- Smith M., Bougher S., Encrenaz T., Forget F., Kleinböhl A. Thermal structure and composition // The Atmosphere and Climate of Mars / Eds: Haberle R., Clancy R., Forget F., Smith M., Zurek R. Cambridge: Cambridge Univ. Press, 2017. P. 42–75. https://doi.org/10.1017/9781139060172.004
- Smith M.D., Daerden F., Neary L., Khayat A.S.J., Holmes J.A., Patel M.R., Villanueva G., Liuzzi G., Thomas I.R., Ristic B., Bellucci G., Lopez-Moreno J.J., Vandaele A.C. The climatology of carbon monoxide on Mars as observed by NOMAD nadir-geometry observations // Icarus. 2021. V. 362. id. 114404. https://doi.org/10.1016/j.icarus.2021.114404
- Soria-Salinas Á., Zorzano M.-P., Mantas-Nakhai R., Martín-Torres J. Wind retrieval from temperature measurements from the Rover Environmental Monitoring Station/Mars Science Laboratory // Icarus. 2020. V. 346. id. 113785. https://doi.org/10.1016/j.Icarus.2020.113785
- Spiga A., Banfield D., Teanby N.A., Forget F., Lucas A., Kenda B., Rodriguez Manfredi J.A., Widmer-Schnidrig R., Murdoch N., Lemmon M.T., and 27 co-authors. Atmospheric science with InSight // Space Sci. Rev. 2018. V. 214. id. 109. https://doi.org/10.1007/s11214-018-0543-0
- Stähler S.C., Khan A., Banerdt W.B., Lognonné P., Giardini D., Ceylan S., Drilleau M., Duran A.C., Garcia R.F., Huang Q., and 31 co-authors. Seismic detection of the Martian core // Science. 2021. V. 373. P. 443–448. https://doi.org/10.1126/science.abi7730
- Taylor P.A., Catling D.C., Daly M., Dickinson C.S., Gunnlaugsson H.P., Harri A.-M., Lange C.F. Temperature, pressure, and wind instrumentation in the Phoenix meteorological package // J. Geophys. Res. 2008. V. 113. id. E00A10. https://doi.org/10.1029/2007JE003015
- Todd J.F.J., Barber S.J., Wright I.P., Morgan G.H., Morse A.D., Sheridan S., Leese M.R., Maynard J., Evans S.T., Pillinger C.T., and 7 co-authors. Ion trap mass spectrometry on a comet nucleus: The Ptolemy instrument and the Rosetta space mission // J. Mass Spectrometry. 2007. V. 42. P. 1–10. https://doi.org/10.1002/jms.1147
- Toigo A.D., Richardson M.I., Wilson R.J., Wang H., Ingersoll A.P. A first look at dust lifting and dust storms near the south pole of Mars with a mesoscale model // J. Geophys. Res.: Planets. 2002. V. 107. id. 5050. https://doi.org/10.1029/2001JE001592
- Toledo D., Rannou P., Pommereau J.-P., Sarkissian A., Foujols T. Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS) // Atmos. Measurements Techniq. 2016. V. 9. P. 455–467. https://doi.org/10.5194/amt-9-455-2016
- Toledo D., Arruego I., Apéstigue V., Jiménez J.J., Gómez L., Yela M., Rannou P., Pommereau J.-P. Measurement of dust optical depth using the solar irradiance sensor (SIS) onboard the ExoMars 2016 EDM // Planet. and Space Sci. 2017. V. 138. P. 33–43. https://doi.org/10.1016/j.pss.2017.01.015
- Vago J., Witasse O., Svedhem H., Baglioni P., Haldemann A., Gianfiglio G., Blancquaert T., McCoy D., de Groot R. ESA ExoMars program: The next step in exploring Mars // Sol. Syst. Res. 2015a. V. 49. P. 518–528. https://doi.org/10.1134/S0038094615070199
- Vago J.L., Lorenzoni L., Calantropio F., Zashchirinskiy A.M. Selecting a landing site for the ExoMars 2018 mission // Sol. Syst. Res. 2015b. V. 49. P. 538–542. https://doi.org/10.1134/S0038094615070205
- Vago J.L., Westall F., Pasteur Instrument Teams, Landing Site Selection Working Group, Other Contributors, Coates A.J., Jaumann R., Korablev O., Ciarletti V., Mitrofanov I., and 66 co-authors. Habitability on early Mars and the search for biosignatures with the ExoMars rover // Astrobiology. 2017. V. 17. P. 471–510. https://doi.org/10.1089/ast.2016.1533
- Webster C.R., Mahaffy P.R., Flesch G.J., Niles P.B., Jones J.H., Leshin L.A., Atreya S.K., Stern J.C., Christensen L.E., Owen T., and 4 co-authors. Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere // Science. 2013. V. 341. № 6143. P. 260–263. https://doi.org/10.1126/science.1237961
- Wilson R.J., Hamilton K. Comprehensive model simulation of thermal tides in the Martian atmosphere // J. Atmos. Sci. 1996. V. 53. № 9. P. 1290–1326. doi: 10.1175/1520–0469(1996)053<1290CMSOTT>2.0.CO;2
- Withers P., Smith M.D. Atmospheric entry profiles from the Mars exploration rovers Spirit and Opportunity // Icarus. 2006. V. 185. P. 133–142. https://doi.org/10.1016/j.icarus.2006.06.013
- Wolff M.J., Smith M.D., Clancy R., Spanovich N., Whitney B., Lemmon M.T., Bandfield J.L., Banfield D., Ghosh A., Landis G., Christensen P.R., Bell III J.F., Squyres S.W. Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. J. Geophys. Res.: Planets. 2006. V. 111. id. E12S17. https://doi.org/10.1029/2006je002786
- Wolff M.J., Smith M.D., Clancy R.T., Arvidson R., Kahre M., Seelos IV F., Murchie S., Savijärvi H. Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer // J. Geophys. Res.: Planets. 2009. V. 114. id. E00D04. https://doi.org/10.1029/2009JE003350
- Wong M.H., Atreya S.K., Mahaffy P.N., Franz H.B., Malespin C., Trainer M.G., Stern J.C., Conrad P.G., Manning H.L.K., Pepin R.O., and 7 co-authors. Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity’s mass spectrometer // Geophys. Res. Lett. 2013. V. 40. P. 6033–6037. https://doi.org/10.1002/2013GL057840
- Yoder C.F., Standish E.M. Martian precession and rotation from Viking lander range data // J. Geophys. Res.: Planets. 1997. V. 102. P. 4065–4080. https://doi.org/10.1029/96JE03642
- Zelenyi L.M., Korablev O.I., Rodionov D.S., Novikov B.S., Marchenkov K.I., Andreev O.N., Larionov E.V. Scientific objectives of the scientific equipment of the landing platform of the ExoMars-2018 mission // Sol. Syst. Res. 2015. V. 49. P. 509–517. https://doi.org/10.1134/S0038094615070229
- Zharkov V.N. The internal structure of Mars: A key to understanding the origin of terrestrial planets // Sol. Syst. Res. 1996. V. 30. P. 456–465.
Supplementary files
