Morphology and some hearing mechanisms of the external ears of the bottlenose dolphin (Tursiops truncatus) and humans

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The study of the morphology and auditory mechanisms of the new (evolutionary) external ears of the bottlenose dolphin was continued in the light of the latest morphological and experimental results obtained by the author. For the first time for toothed whales, it has been shown that the bottlenose dolphin (Tursiops truncatus) has three external auditory canals (AC) in the left ear and four in the right ear. However, in contrast to the human AC – located symmetrically on the left and right half of the head, the left and right row of the dolphin AC, having bilateral and rostral-caudal asymmetry, are located at the tip of the rostrum asymmetrically (rostral-ventral). It has been established that the illumination by echo (sound) and shielding by the rostrum and skull of the firsts ACs is fundamentally different from the rest of the ACs, depending on spatial localization of echo (sound). The architecture of the ACs are optimal for the formation of unique signs of echo (sound) localization, and for it in-phase reception by all ACs in the direction of maximum accuracy of hearing localization, without the localization signs, which is fundamentally importance for fine analysis of the echo. In contrast, in human hearing, sound is colored by signs of localization at any position it in space. The mechanisms of localization of echo (sound) and their fundamental difference in dolphins and humans, as well as mechanisms for protecting the dolphin’s hearing from interfering reflections, are considered. It has been established that the auditory mechanisms of the external ears of dolphins and humans are determined by their morphology and functions.

Texto integral

Acesso é fechado

Sobre autores

V. Ryabov

Federal Research Center “Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences”

Autor responsável pela correspondência
Email: ryabofff@inbox.ru

Vyazemsky Karadag Scientific Station—Natural Reserve of Russian Academy of Sciences

Rússia, 298188, Nauki Str. 24, Kurortnoe, Feodosiya

Bibliografia

  1. Ketten D.R. Functional analyses of whale ears: Adaptations for underwater hearing // I.E.E.E. Proc. in Underwater Acoustics. 1994. V. 1. P. 264–270.
  2. Norris K.S. The evolution of acoustic mechanisms in odontocete cetaceans // Evolution and Environment / Ed. Drake E. New Haven: Yale Univ. Press., 1968. P. 297–324.
  3. Brill R.L. Moor P.W.B., Dankiewicz L.A. Assesment of dolphin (Tursiops truncatus) auditory sensitivity and hearing loss using jawphones // J. Acoust. Soc. Amer. 2001. V. 109. P. 1717–1722.
  4. Popov V.V., Supin A. Ya., Klishin V.O., et al. Evidence for double acoustic windows in the dolphin, Tursiops truncatus // J. Acoust. Soc. Amer. 2008. V. 123(1). P. 552–560.
  5. Cranford T.W., Krysl P., Hildebrand J.A. Acoustic pathways revealed: simulated sound transmission and reception in Cuvier’s beaked whale (Ziphius cavirostris) // Bioinsp. Biomim. 2008. 3. 016001. 10 pp. https://doi.org/10.1088/1748-3182/3/1/016001
  6. Ryabov V.A. Mechanisms of Sound Reception and Conduction in the Dolphin // Biophysics. 2014. 59(3). P. 475–483.
  7. Ryabov V.A. The effect of acoustic shielding of the region of a dolphin’s mental foramina on its hearing sensitivity // St. Petersburg Polytechnical University Journal: Physics and Mathematics. 2016. V. 2. P. 240–246. https://doi.org/10.1016/j.spjpm.2016.08.003
  8. Романенко Е.В. Акустика дельфинов и рыб (обзор) // Акуст. журн. 2019. Т. 65. № 1. С. 82–92.
  9. Au W.W.L., Moore P.W.B. Dolphin beam patterns // J. Acoust. Soc. Am. 1984. V. 75: 257–261.
  10. Renaud D.L., Popper A.N. Sound localization by the bottlenose porpoise Tursiops truncates // J. exp. Biol. 1975. V. 63. P. 569–585.
  11. Ryabov V.A. Lower jaw – peripheric part of the dolphin echolocation hearing // Collection of scientific papers after the third Int. Conf. MARINE MAMMALS OF THE HOLARCTIC, October 11–17, 2004, Koktebel, Crimea. Moscow, 2004. P. 483–489.
  12. Рябов В.А. Роль асимметрии левого и правого наружного уха дельфина афалина (Tursiops truncatus) в пространственной локализации звука // Акуст. журн. 2023. Т. 69. № 1. С. 101–114.
  13. Ryabov V.A. Role of the mental foramens in dolphin hearing // Natural Science. 2010. V. 2. No 6. P. 646–653. doi: 10.4236/ns.2010.26081, http://www.scirp.org/journal/NS/
  14. Ryabov V.A. A dolphin lower jaw is hydro acoustic antenna of the traveling wave // Abstracts of 146 meeting of ASA. J. Acoust. Soc. Amer. 1144. 2003. P. 2414–2415.
  15. Varanasi U., Malins D.C. Unique lipids of the porpoise (Tursiops gilli): differences in triacyclglycerols and wax esters of acoustic (mandibular and melon) and blubber tissues // Biochimica et Biophysica Acta. 1971. V. 231. P. 415–418.
  16. Ryabov V.A. Acoustic Clutter Field and Echo Reception by the Dolphin // ISSN0006–3509. Biophysics. 2008. V. 53. No 3. P. 237–242. http://dx.doi.org/10.1134/S0006350908030123
  17. Johansen P.A. Measurement of the human ear canal // Acustica. 1975. V. 33. N 5. P. 349–351.
  18. Скучик Е. Основы акустики. М. Мир, 1976. Т. 1. 520 с.
  19. Слуховая система / Ред. Альтман Я.А. Л.: Наука, 1990. 620 с. (Основы современной физиологии.)
  20. Ryabov V.A. Acoustic Signals and Echolocation System of the Dolphin // Biophysics. 2014. 59(1). P. 135–147.
  21. Moore P.W.B., Pavlosky D.A., Dankiewicz L. Interaural Time and Intensity Difference Thresholds in the Bottlenose Dolphin (Tursiops truncatus) // Sensory Systems of Aquatic Mammals / Eds. Kastelein R.A., Thomas J.A., Nachtigall P.E. DeSpil Publishers, Woerden, the Netherlands, 1995.
  22. Zaslavsky G.L., Ryabov V.A. Discrimination of targets by dolphin (Tursiops truncatus) in the presence of interfering cylinders // Marine mammal sensory Systems. N.Y. Plenum Press. 1992. P. 433–437.
  23. Wei1 C., Houser D., Erbe C., Mátrai E., Ketten D. and Finneran J.J. Does rotation increase the acoustic field of view? Comparative models based on CT data of a live dolphin versus a dead dolphin // Bioinspir. Biomim. 2023. 18 (3). 035006. https://doi.org/10.1088/1748-3190/acc43d
  24. Norberg R.A. Occurrence and independent evolution of bilateral ear asymmetry in owls and implications on owl taxonomy // Phil. Trans. Roy. Soc. Lond. Ser. B. 1977. V. 280. P. 375–408.
  25. Knudsen E.I., Konishi M. Mechanisms of sound localization in the barn owl (Tyto alba) // J. Comp. Physiol. A. 1979. V. 133. P. 13–21.
  26. Konishi M. Neuroethology of sound localization in the owl // J. Comp. Physiol. 1993. V 173. P. 3–7.
  27. Gorlinsky I.A., Konstantinov A.I. Auditory localization of ultrasonic source by Rhinolophus ferrum-equinum // Proc. of the forth Int. Bat Res. Conf. Nairobi. 1978. P. 145–153.
  28. von Hornbostel E.M., Wertheimer M. Über die Wahrnehmung der Schallrichtung (нем.) // Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften zu Berlin. Berlin: Akademie der Wissenschaften, 1920. Bd. 20. S. 388–396.
  29. Howard I.P., Templeton W.B. Human Spatial Orientation. Oxford: John Wiley & Sons, 1966.
  30. Mills A.W. On the minimum audible angle // J. Acoust. Soc. Am. 1958. V. 49(2). P. 467–477.
  31. Mills A.W. Auditory localization // Foundation of Modern Auditory Theory. V. II / Ed. Tobias J.V. New York: Academic Press, 1972. P. 303–348.
  32. Nordland B. Phisical factors in angular localization // Acta Otolaringol. 1962. V. 54. P. 75.
  33. Branstetter B.K., Mevissen S.J., Herman L.M. et al. Horizontal angular discrimination by an echolocating bottlenose dolphin Tursiops truncates // Bioacoustics. 2003. № 14. P. 15–34.
  34. Gardner M.B. Some monaural and binaural factors of median plane localization // J. Acoust. Soc. Am. 1973. V. 54. N 6. P. 1489–1495.
  35. Butler R.A. The influence of the external and middle ear on auditory discrimination // Handbook of sensory physiology. Berlin: Springer-Verlag, 1975. V. 5(2). P. 247–260.
  36. Miller G.S. The telescoping of the cetacean skull // Smithsonian Misc Coll. 1923. V. 76. P. 1–67.
  37. Белькович В.М., Дубровский Н.А. Сенсорные основы ориентации китообразных. Л.: Наука, 1976. 204 с.
  38. Blauert J. Spatial hearing: the psychophysics of human sound localization. MA: MIT Press, Cambridge, 1997. 494 p.
  39. Sandel T.T., Teas D.C., Feddersen W.E., Jefferes L.A. Localization of Sound from Single and Paired Sources// J. Acoust. Soc. Am. 1955. V. 27. P. 842–852. https://doi.org/10.1121/1.1908052
  40. Zaslavski G.L. Differences between the auditory system of humans and bottlenose dolphins. Razreda sazu XLVII-3, Ljubljana, 2006, Slovenia, pp 51–74.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Skull and lower jaw of the bottlenose dolphin (Tursiops truncatus), ventral view. On the left is the location of the PC and MC of the left (L) and right (R) outer ear (a section of the right half of the lower jaw from the symphysis to the joint is shown, and a section of its left half in the symphysis area). On the right is a section in the symphysis area, PC and MC, enlarged. MT – soft tissues and fat pad filling the PC and MC – are attached to the lateral wall of the TP. TP – left and right tympanoperiotic complex (middle and inner ear). X – longitudinal axis.

Baixar (328KB)
3. Fig. 2. Dolphin skull, lateral view, left side. ABC – traveling wave antenna (row PC1-PC3, Fig. 1.) SP1-SP3 – external auditory canals. Profile of SP1 – solid line (profile of PC1 and MC). Orifice of the acoustic horn – caudal opening of the medial wall of the lower jaw bone (dashed line). Acoustic opaque reflector screen – outer posterolateral wall of the lower jaw bone. TP – tympanoperiotic complex. O – longitudinal axis of the animal’s head.

Baixar (53KB)
4. Fig. 3. Lower and upper jaw (rostrum) of the bottlenose dolphin (Tursiops truncatus), rostral-ventral-lateral view. The location of the visible for this angle SP along the right (R) and left (L) halves of the lower jaw is shown. The areas of the skull located more than 27 cm from the tip of the rostrum are shown with less contrast.

Baixar (24KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024