Accounting for viscous and thermal effects in time in computational problems of acoustics
- Autores: Korolkov А.I.1, Laptev A.Y.2, Shanin A.V.2
-
Afiliações:
- University of Manchester
- Lomonosov Moscow State University
- Edição: Volume 70, Nº 6 (2024)
- Páginas: 933-940
- Seção: ОБРАБОТКА АКУСТИЧЕСКИХ СИГНАЛОВ. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ
- URL: https://ter-arkhiv.ru/0320-7919/article/view/648444
- DOI: https://doi.org/10.31857/S0320791924060113
- EDN: https://elibrary.ru/JTHHTK
- ID: 648444
Citar
Resumo
The problem of acoustic wave propagation with thermoviscous boundary conditions is studied. For thermoviscous boundary conditions, a time-dependent formulation is presented based on the concept of a fractional derivative. A weak formulation of the problem is given, which is reduced to a system of Volterra-type integro-differential equations using the finite element method. An implicit finite-difference scheme is constructed for the numerical solution of this system. To verify it, the problem of sound propagation in a thin pipe is modeled, the results of numerical modeling are compared with the analytical solution.
Palavras-chave
Texto integral

Sobre autores
А. Korolkov
University of Manchester
Email: laptev97@bk.ru
Reino Unido da Grã-Bretanha e Irlanda do Norte, Oxford Road, Manchester, M13 9PL
A. Laptev
Lomonosov Moscow State University
Autor responsável pela correspondência
Email: laptev97@bk.ru
Rússia, Leninskie Gory, Moscow, GSP-1, 119991
A. Shanin
Lomonosov Moscow State University
Email: laptev97@bk.ru
Rússia, Leninskie Gory, Moscow, GSP-1, 119991
Bibliografia
- Pierce A.D. Acoustics, An Introduction to Its Physical Principles and Applications. Acoustical Society of America, 2019. Разд. 10.4.
- Tijdeman H. On the propagation of sound waves in cylindrical tubes // J. Sound Vibration. 1975. V. 39. № 1. P. 1–33.
- Richards W.B. Propagation of Sound Waves in Tubes of Noncircular Cross Section. NASA Technical Paper 2601, NASA Lewis Research Center, Cleveland, Ohio, 1986.
- Каспарянц А.А. К вопросу о распространении звуковых волн в “газах и жидкостях Ван-дер-Ваальса” // Акуст. журн. 1958. Т. 4. № 4. С. 325–332.
- Rienstra S.W., Hirschberg A. An Introduction in Acoustics. Extended and revised version of report IWDE92–06. Eindhoven University of Technology, 2016. Разд. 4.5.
- Searby G., Habibullah M., Nicole A., Laroche E. Prediction of the Efficiency of Acoustic Damping Cavities // J. Propulsion and Power. 2008. V. 24. № 3. P. 516–523.
- Berggren M., Bernland A., Noreland D. Acoustic boundary layers as boundary conditions // J. Computational Physics. 2018. V. 371. P. 633–650.
- Зенкевич О., Морган К. Конечные элементы и аппроксимация. М.: Мир, 1986. 318 с.
- Linz P. Analytical and Numerical Methods for Volterra Equations. Studies for Applied Mathematics. 1985. Разд. 11.4.
- Zwikker C., Kosten C.W. Sound Absorbing Materials. Elsevier Pub. Co., 1949.
- Stinson M.R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape // J. Acoust. Soc. Am. 1991. V. 89. № 2. P. 550–558.
- Weston D.E. The Theory of Propagation of Plane Sound Waves in Tubes // Proc. of the Physical Society. Section B. 1953. V. 66. № 8. P. 695–709.
- Allard J.F., Atalla N. Propagation of Sound in Porous Media. John Wiley & Sons, Ltd, 2009. Разд. 4.4 и 4.7.
- Craggs A., Hildebrandt J.G. Effective densities and resistivities for acoustic propagation in narrow tubes // J. Sound Vibration. 1984. V. 92. № 3. P. 321–331.
- Holm S. Waves with Power-Law Attenuation. Acoustical Society of America, 2019. Разд. 1.4.
Arquivos suplementares
