The involvement of T1R family receptors expressed outside the oral cavity in the regulation of metabolism

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The membrane T1R taste receptor family interacts with sweet substances – carbohydrates, artificial sweeteners and some amino acids. An important result of research in the 21st century was the discovery of abundant expression of these receptors outside of the oral cavity, mainly in cells actively involved in metabolic processes: enteroendocrine cells of the intestine, pancreatic β-cells, adipose and bone tissue, etc. This review integrates and analyzes current data on the role of extraoral T1R receptors in the regulation of metabolism, cell growth and differentiation, which is achieved through modulation of hormone secretion (insulin, GLP-1, GIP), activity of membrane transporters and cell growth and proliferation factors. T1R mediated cellular responses to nutrients, mechanisms of signal transduction, effects on inositol triphosphate, cAMP and intracellular Ca2+ levels, stimulatory effects on glucose transporters SGLT1 and GLUT2, effects on mTOR and hormone secretion are described. The interaction of membrane receptor mechanisms and metabolic detection of glucose by the ATP/ADP ratio in the cell cytoplasm is also discussed. Putative evolutionary adaptation of metabolic processes related to nutrition and manifested in polymorphism of genes encoding T1R proteins is presented. It is suggested that extraoral taste receptors for sweet substances and amino acids may be a target for therapeutic interventions in obesity, hyperglycemia, insulin resistance, and hepatosteatosis.

Full Text

Restricted Access

About the authors

V. O. Murovets

Pavlov Institute of Physiology, Russian Academy of Sciences

Author for correspondence.
Email: murovetsvo@infran.ru
Russian Federation, Saint Petersburg, 199034

E. A. Sozontov

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: sozontovea@infran.ru
Russian Federation, Saint Petersburg, 199034

V. A. Zolotarev

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: zolotarevva@infran.ru
Russian Federation, Saint Petersburg, 199034

References

  1. Муровец В.О., Бачманов А.А., Травников С.В. и др. Участие рецепторного белка TAS1R3 в регуляции обмена глюкозы у мышей при разных уровнях гликемии // Журн. эвол. биохим. и физиол. 2014. Т. 50. № 4. С. 296–304. https://doi.org/10.1134/S0022093014040061
  2. Муровец В.О., Лукина Е.А., Золотарев В.А. Влияние полиморфизма гена Tas1r3 на предпочтение и потребление сахарозы и низкокалорийных сахарозаменителей у межлинейных гибридов мышей первого поколения // Журн. эвол. биохим. и физиол. 2018. Т. 54. № 3. С. 194–204.
  3. Муровец В.О., Созонтов Е.А., Андреева Ю.В. и др. Влияние рецепторного белка T1R3 на глюконеогенез и жировой обмен у мышей // Росс. физиол. журн. им. И. М. Сеченова. 2016. Т. 102. С. 668–679.
  4. Муровец В.О., Созонтов Е.А., Андреева Ю.В. и др. Влияние полиморфизма гена Tas1r3 на метаболизм глюкозы и липидов у межлинейных гибридов мышей // Росс. физиол. журн. им. И. М. Сеченова. 2018. Т. 104. № 3. С. 338–350.
  5. Муровец В.О., Созонтов Е.А., Зачепило Т.Г. Влияние вкусового рецепторного белка T1R3 на развитие островковой ткани поджелудочной железы мыши // Докл. Акад. наук. 2019. Т. 484. № 1. С. 117–120. https://doi.org/10.31857/S0869-56524841117-120
  6. Муровец В.О., Лукина Е.А., Золотарев В.А. Сладкий вкус: от рецепции к восприятию // Успехи физиол. наук. 2023. Т. 54. № 4. С. 72–92. https://doi.org/10.31857/S0301179823040057
  7. Antinucci M., Risso D. A matter of taste: Lineage-specific loss of function of taste receptor genes in vertebrates // Front. Mol. Biosci. 2017. V. 4. P. 81. https://doi.org/10.3389 /fmolb.2017.00081
  8. Bachmanov A. A., Bosak N. P., Floriano W. B. et al. Genetics of sweet taste preferences // Flavour and Fragr. J. 2011. V. 26. P. 286–294. https://doi.org/10.1002/ffj.2074
  9. Bachmanov A. A., Bosak N. P., Lin C. et al. Genetics of Taste Receptors // Curr. Pharm. Des. 2014. V. 20. P. 2669–2683. https://doi.org/10.2174/13816128113199990566
  10. Bachmanov A.A., Beauchamp G.K. Taste receptor genes // Annu. Rev. Nutr. 2007. V. 27. P. 389–414. https://doi.org/10.1146/annurev.nutr.26.061505.111329
  11. Bachmanov A.A., Li. X., Reed D.R. et al. Positional cloning of the mouse saccharin preference (Sac) locus // Chem. Senses. 2001. V. 26. Iss. 7. P. 925–933. https://doi.org/10.1093/chemse/26.7.925
  12. Bachmanov A.A., Reed D.R., Ninomiya Y. et al. Sucrose consumption in mice: major influence of two genetic loci affecting peripheral sensory responses // Mamm. Genome. 1997. V. 8(8). P. 545–548. https://doi.org/10.1007/s003359900500
  13. Bachmanov A.A., Tordoff M.G., Beauchamp G.K. Sweetener preference of C57BL/6ByJ and 129P3/J. mice // Chem. Senses. 2001. V. 26. Iss. 7. P. 905–913. https://doi.org/10.1093/chemse/26.7.905
  14. Balcazar N., Sathyamurthy A., Elghazi L. et al. mTORC1 Activation Regulates β-Cell Mass and Proliferation by Modulation of Cyclin D2 Synthesis and Stability // J. Biol. Chem. 2009. V. 284(12). P. 7832–7842. https://doi.org/10.1074/jbc.M807458200
  15. Baldwin M.W., Toda Y., Nakagita T. et al. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor // Science. 2014. V. 345. Iss. 6199. P. 929–933. https://doi.org/10.1126/science.1255097
  16. Batchelor D.J., Al-Rammahi M., Moran A.W. et al. Sodium/glucose cotransporter-1, sweet receptor, and disaccharidase expression in the intestine of the domestic dog and cat: two species of different dietary habit // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011. V. 300(1). P. R67–75. https://doi.org/10.1152/ajpregu.00262.2010
  17. Bathina S., Faniyan T.S., Bainbridge L. et al. Normal β-Cell Glut2 expression is not required for regulating glucose-stimulated insulin secretion and systemic glucose homeostasis in mice // Biomolecules. 2023. V. 13(3). P. 540. https://doi.org/10.3390/biom13030540
  18. Butler A.E., Janson J., Soeller W.C. et al. Increased β-Cell apoptosis prevents adaptive increase in β-cell mass in mouse model of type 2 diabetes // Diabetes. 2003. V. 52(9). P. 2304–2314. https://doi.org/10.2337/diabetes.52.9.2304
  19. Cai W., He S., Liang X.F. et al. Methylation of T1R1 gene in the vegetarian adaptation of grass carp Ctenopharyngodon idella // Sci Rep. 2018. V. 8(1). P. 6934. https://doi.org/10.1038/s41598-018-25121-4
  20. Calvo S.S.-C., Egan J.M. The endocrinology of taste receptors // Nat. Rev. Endocrinol. 2015. V. 11(4). P. 213–227. https://doi.org/10.1038/nrendo.2015.7
  21. Cappariello A., Ponzetti M., Rucci N. The “soft” side of the bone: unveiling its endocrine functions // Horm. Mol. Biol. Clin. Investig. 2016. V. 28(1). P. 5–20. https://doi.org/10.1515/hmbci-2016-0009
  22. Chamouni A., Schreiweis C., Oury F. Bone, brain & beyond // Rev. Endocr. Metab. Disord. 2015. V. 16. P. 99–113. https://doi.org/10.1007/s11154-015-9312-5
  23. Chandrashekar J., Hoon M.A., Ryba, N. et al. The receptors and cells for mammalian taste // Nature. 2006. V. 444. P. 288–294. https://doi.org/10.1038/nature05401
  24. Chen K., Yan J., Suo Y. et al. Nutritional status alters saccharin intake and sweet receptor mRNA expression in rat taste buds // Brain Res. 2010. V. 1325. P.53–62. https://doi.org/10.1016/j.brainres.2010.02.026
  25. Clapp T.R., Trubey K.R., Vandenbeuch A. et al. Tonic activity of Galpha-gustducin regulates taste cell responsivity // FEBS Lett. 2008. V. 582. P. 3783–3787. https://doi.org/10.1016/j.febslet.2008.10.007
  26. Colsoul B., Schraenen A., Lemaire K. et al. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5–/– mice // Proc. Natl. Acad. Sci. USA. 2010. V. 107. P. 5208–5213. https://doi.org/10.1073/pnas.0913107107
  27. Craig T. J., Ashcroft F. M., Proks P. How ATP inhibits the open K(ATP) channel // J. Gen. Physiol. 2008. V. 132 (1). P. 131–144. https://doi.org/10.1085/jgp.200709874
  28. Damak S., Rong M., Yasumatsu K. et al. Detection of sweet and umami taste in the absence of taste receptor T1r3 // Science. 2003. V. 301. P. 850–853. https://doi.org/10.1126/science.1087155
  29. Daniel H., Zietek T. Taste and move: Glucose and peptide transporters in the gastrointestinal tract // Exp. Physiol. 2015. V. 100(12). P. 1441–1450. https://doi.org/10.1113/EP085029
  30. Delay E.R., Hernandez N.P., Bromley K. et al. Sucrose and monosodium glutamate taste thresholds and discrimination ability of T1R3 knockout mice // Chem. Senses. 2006. V. 31(4). P. 351–357. https://doi.org/10.1093/chemse/bjj039
  31. Dias A.G., Eny K.M., Cockburn M. et al. Variation in the TAS1R2 gene, sweet taste perception and intake of sugars // J. Nutrigenet. Nutrigenomics. 2015. V. 8. №. 2. P. 81–90. https://doi.org/10.1159/000430886
  32. Diez-Sampedro A., Hirayama B.A., Osswald C. et al. A glucose sensor hiding in a family of transporters // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 11753–11758. https://doi.org/10.1073/pnas.1733027100
  33. Ding L., Yin Y., Han L. et al. TSC1-mTOR signaling determines the differentiation of islet cells // J. Endocr. 2017. V. 232(1). P. 59–70. https://doi.org/10.1530/JOE-16-0276
  34. Dotson C.D., Geraedts M.C., Munger S.D. Peptide regulators of peripheral taste function // Semin. Cell. Dev. Biol. 2013. V. 24. P. 232–239. https://doi.org/10.1016/j.semcdb.2013.01.004
  35. Drucker D.J. Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls // Diabetes. 2013. V. 62(10). P. 3316–3323. https://doi.org/10.2337/db13-0822
  36. DuBois G.E. Molecular mechanism of sweetness sensation // Physiol. Behav. 2016. V. 164. P. 453–463. https://doi.org/10.1016/j.physbeh.2016.03.015
  37. Duca F.A., Covasa M. Current and emerging concepts on the role of peripheral signals in the control of food intake and development of obesity // Br. J. Nutr. 2012. V. 1. P. 16. https://doi.org/10.1017/S0007114512000529
  38. Dutta Banik D., Martin L.E., Freichel M. et al. TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells // Proc. Natl. Acad. Sci. U S A. 2018. V. 115(4). P. E772–E781. https://doi.org/doi: 10.1073/pnas.1718802115
  39. Eaton M.S., Weinstein N., Newby J.B. et al. Loss of the nutrient sensor TAS1R3 leads to reduced bone resorption // J. Physiol. Biochem. 2018. V. 74(1). P. 3–8. https://doi.org/10.1007 /s13105-017-0596-7
  40. Elson A.E., Dotson C.D., Egan J.M., Munger S.D. Glucagon signaling modulates sweet taste responsiveness // FASEB J. 2010. V. 24. P. 3960–3969. https://doi.org/10.1096/fj.10-158105
  41. Eny K.M., Wolever T.M., Corey P.N., El-Sohemy A. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations // Am. J. Clin. Nutr. 2010. V. 92. Iss. 6. P. 1501–1510. https://doi.org/10.3945/ajcn.2010.29836
  42. Eriksson L., Esberg A., Haworth S., Holgerson P.L., Johansson I. Allelic variation in taste genes is associated with taste and diet preferences and dental caries // Nutrients. 2019. V. 11. P. 1491. https://doi.org/10.3390/nu11071491
  43. Fioramonti X., Lorsignol A., Taupignon A. et al. A new ATP-sensitive K+ channel-independent mechanism is involved in glucose-excited neurons of mouse arcuate nucleus // Diabetes. 2004. V. 53(11). P. 2767–2775. https://doi.org/10.2337/diabetes.53.11.2767
  44. Fuller J.L. Single-locus control of saccharin preference in mice // J Hered. 1974. V. 65(1). P. 33–36. https://doi.org/10.1093/oxfordjournals.jhered.a108452
  45. Fushan A.A., Simons C.T., Slack J P., Drayna D. Association between common variation in genes encoding sweet taste signaling components and human sucrose perception // Chem. Senses. 2010. V. 35. Iss. 7. P. 579–592. https://doi.org/10.1093 /chemse /bjq063
  46. Fushan A.A., Simons C.T., Slack J.P. et al. Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose // Current Biol. 2009. V. 19(15). P. 1288–1293. https://doi.org/10.1016/ j.cub.2009.06.015
  47. Garcia-Bailo B., Toguri C., Eny M. et al. Genetic variation in taste and its influence on food selection // OMICS: A J. of Integrative Biol. 2009. V. 13(1). P. 69–80. https://doi.org/10.1089/omi.2008.0031
  48. Gembal M., Gilon P., Henquin J.C. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse β-cells // J. Clin. Investig. 1992. V. 89(4). P. 1288–1295. https://doi.org/10.1172/JCI115714
  49. Glendinning J.I., Chyou S., Lin I. Initial licking responses of mice to sweeteners: effects of Tas1r3 polymorphisms // Chem. Senses. 2005. V. 30. P. 601–614. https://doi.org/10.1093/chemse/bji054
  50. Glendinning J.I., Gillman J., Zamer H. et al. The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice // Physiol. Behav. 2012. V. 107(1). P. 50–58. https://doi.org/10.1016/j.physbeh.2012.05.023
  51. Gouyon F., Caillaud L., Carriere V. et al. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: a study in GLUT2-null mice // J. Physiol. 2003. V. 552. P. 823–832. https://doi.org/10.1113/jphysiol.2003.049247
  52. Greenberg D., McCaffery J., Potack J.Z. et al. Differential satiating effects of fats in the small intestine of obesity-resistant and obesity-prone rats // Physiol. Behav. 1999. V. 66. P. 621–626. https://doi.org/10.1016/s0031-9384(98)00336-9
  53. Habib A.M., Richards P., Rogers G.J. et al. Co-localisation and secretion of glucagon-like peptide 1 and peptide YY from primary cultured human L cells // Diabetologia. 2013. V. 56. P. 1413–1416. https://doi.org/10.1007/s00125-013-2887-z
  54. Hamano K., Nakagawa Y., Ohtsu Y. et al. Lactisole inhibits the glucose-sensing receptor T1R3 expressed in mouse pancreatic β-cells // J. Endocrinol. 2015. V. 226. P. 57–66. https://doi.org/10.1530/JOE-15-0102
  55. Herman M.A., Kahn B.B. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony // J. Clin. Investig. 2006. V. 116(7). P. 1767–1775. https://doi.org/10.1172/JCI29027
  56. Herness M.S. Vasoactive intestinal peptide-like immunoreactivity in rodent taste cells // Neurosci. 1989. V. 33. P. 411–419. https://doi.org/10.1016/0306-4522(89)90220-0
  57. Herness S., Zhao F.L. The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud // Physiol. Behav. 2009. V. 97. P. 581–591. https://doi.org/10.1016/j.physbeh.2009.02.043
  58. Herrera Moro Chao D., Argmann C., Van Eijk M. et al. Impact of obesity on taste receptor expression in extra-oral tissues: Emphasis on hypothalamus and brainstem // Sci. Rep. 2016. V. 6. P. 29094. https://doi.org/10.1038/srep29094
  59. Hiriart M., Aguilar–Bryan L. Channel regulation of glucose sensing in the pancreatic beta–cell // Am. J. Physiol. Endocrinol. 2008. V. 295(6). P. 1298–1306. https://doi.org/10.1152/ajpendo.90493.2008
  60. Hubbard K.B., Hepler J.R. Cell signalling diversity of the Gqalpha family of heterotrimeric G proteins // Cell Signal. 2006. V. 18(2). P. 135–150. https://doi.org/10.1016/j.cellsig.2005.08.004
  61. Inoue M., Glendinning J. I., Theodorides M. L. et al. Allelic variation of the Tas1r3 taste receptor gene selectively affects taste responses to sweeteners: evidence from 129.B6-Tas1r3 congenic mice // Physiol. Genomics 2007. V. 32. Iss. 1. P. 82–94. https://doi.org/10.1152/physiolgenomics.00161.2007
  62. Inoue M., Reed D.R., Li X. et al. Allelic variation of the Tas1r3 taste receptor gene selectively affects behavioral and neural taste responses to sweeteners in the F2 hybrids between C57BL/6ByJ and 129P3/J mice // J. Neurosci. 2004. V. 24(9). P. 2296–2303. https://doi.org/10.1523/JNEUROSCI.4439-03.2004
  63. Ishimaru Y. Molecular mechanisms of taste transduction in vertebrates // Odontology. 2009. V. 97. P. 1–7. https://doi.org/10.1007/s10266-008-0095-y
  64. Jang H.J., Kokrashvili Z., Theodorakis M.J. et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1 // Proc. Natl. Acad. Sci. USA. 2007. V. 104(38). P. 15069–15074. https://doi.org/10.1073/pnas.0706890104
  65. Jiang P., Josue J., Li X., et al. Major taste loss in carnivorous mammals // PNAS. 2012. V. 103. Iss. 13. P. 4956–4961. https://doi.org/10.1073/pnas.1118360109
  66. Katsuda Y., Ohta T., Miyajima K. et al. Diabetic complications in obese type 2 diabetic rat models // Exp. anim. 2014. V. 63(2). P. 121–132. https://doi.org/10.1538/expanim.63.121
  67. Kawai K., Sugimoto K., Nakashima K., Miura H., Ninomiya Y.C. Leptin as a modulator of sweet taste sensitivities in mice // Proc. Natl. Acad. Sci. US. 2000. V. 97. P. 11044–11049. https://doi.org/10.1073/pnas.190066697
  68. Kellett G.L., Brot-Laroche E. Apical GLUT2: A Major Pathway of Intestinal Sugar Absorption // Diabetes. 2005. V. 54(10). P. 3056–3062. https://doi.org/10.2337/diabetes.54.10.3056
  69. Kellett G.L., Brot-Laroche E., Mace O.J. et al. Sugar absorption in the intestine: the role of GLUT2 // Annu. Rev. Nutr. 2008. V. 28. P. 35–54. https://doi.org/10.1146/annurev.nutr.28.061807.155518
  70. Kellett G.L., Helliwell P. A. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane // Biochem. J. 2000. V. 350. P. 155–162. PMCID: PMC1221237
  71. Kim U.K., Wooding S., Riaz N. et al. Variation in the human TAS1R Taste receptor genes // Chem. Senses. 2006. V. 31. Iss. 7. P. 599–611. https://doi.org/10.1093/chemse/bjj065
  72. Kojima I., Nakagawa Y. The role of the sweet taste receptor in enteroendocrine cells and pancreatic β-cells // Diabetes Metab. J. 2011. V. 35(5). P. 451–457. https://doi.org/10.4093 /dmj.2011.35.5.451
  73. Kojima I., Nakagawa Y., Hamano K. et al. Glucose-sensing receptor T1R3: A new signaling receptor activated by glucose in pancreatic β-cells // Biol Pharm Bull. 2015. V. 38(5). P. 674–679. https://doi.org/10.1248/bpb.b14-00895
  74. Kojima I., Nakagawa Y., Ohtsu Y. et al. Sweet taste-sensing receptors expressed in pancreatic ß-cells: sweet molecules act as biased agonists // Endocrinology and Metab. 2014. V. 29. P. 12–19. http://doi.org/10.3803/EnM.2014.29.1.12
  75. Kokabu S., Lowery J.W., Toyono T. et al. On the emerging role of the taste receptor type 1 (T1R) family of nutrient-sensors in the musculoskeletal system // Molecules. 2017. V. 22. P. 469. https://doi.org/10.3390/molecules22030469
  76. Kokrashvili Z., Mosinger B., Margolskee R.F. T1R3 and alpha–gustducin in gut regulate secretion of glucagon–like peptide–1 // Ann. NY Acad. Sci. 2009a. V. 1170. P. 91–94. https://doi.org/10.1111/j.1749-6632.2009.04485.x
  77. Kokrashvili Z., Mosinger B., Margolskee R.F. Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones // Am. J. Clin. Nutr. 2009. V. 90(3). P. 822–825. https://doi.org/10.3945/ajcn.2009.27462T
  78. Kokrashvili Z., Yee K.K., Ilegems E. et al. Endocrine taste cells // Br. J. Nutr. 2014. V. 111(1). P. 23–29. https://doi.org/10.1017/s0007114513002262
  79. Kolesnikov S.S., Margolskee R.F. A cyclic-nucleotidesuppressible conductance activated by transducin in taste cells // Nature. 1995. V. 376(6535). P. 85–88. https://doi.org/10.1038/376085a0
  80. Kyriazis G.A., Smith K.R., Tyrberg B. et al. Sweet taste receptors regulate basal Insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice // Endocrinology. 2014. V. 155(6). P. 2112–2121. https://doi.org/10.1210/en.2013-2015
  81. Kyriazis G.A., Soundarapandian M.M., Tyrberg B. Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion // Proc. Natl. Acad. Sci. USA. 2012. V. 109(8). P. 524–532. https://doi.org/10.1073/pnas.1115183109
  82. Larsson M.H., Håkansson P., Jansen F.P. et al. Ablation of TRPM5 in mice results in reduced body weight gain and improved glucose tolerance and protects from excessive consumption of sweet palatable food when wed high caloric diets // PLoS One. 2015. V. 10(9). P. e0138373. https://doi.org/10.1371/journal.pone.0138373
  83. Li X., Inoue M., Reed D. R., Huque T. et al. High-resolution genetic mapping of the saccharin preference locus (Sac) and the putative sweet taste receptor (T1R1) gene (Gpr70) to mouse distal Chromosome 4 // Mamm. Genome. 2001. V. 12. № 1. P. 13–16. https://doi.org/10.1007/s003350010236
  84. Linnemann A.K., Baan M., Davis D.B. Pancreatic b-cell proliferation in obesity // Adv. Nutr. 2014. V. 5(3). P. 278–288. https://doi.org/10.3945/an.113.005488
  85. Liu S., Manson J.E. Dietary carbohydrates, physical inactivity, obesity, and the 'metabolic syndrome' as predictors of coronary heart disease // Curr. Opin. Lipidol. 2001. V. 12(4). P. 395–404. https://doi.org/10.1097/00041433-200108000-00005
  86. Mace O.J., Affleck J., Patel N. et al. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2 // J. Physiol. 2007a. V. 582. P. 379–392. https://doi.org/10.1113/jphysiol.2007.130906
  87. Mace O.J., Morgan E.L., Affleck J.A. et al. Calcium absorption by Cav1.3 induces terminal web myosin II phosphorylation and apical GLUT2 insertion in rat intestine // J. Physiol. 2007. V. 580. P. 605–616. https://doi.org/10.1113/jphysiol.2006.124784
  88. Maedler K., Schumann D.M., Schulthess F. et al. Aging correlates with decreased beta-cell proliferative capacity and enhanced sensitivity to apoptosis: a potential role for Fas and pancreatic duodenal homeobox-1 // Diabetes. 2006. V. 55. P. 2455–2462. https://doi.org/10.2337/db05-1586
  89. Margolskee R. F. Molecular mechanisms of bitter and sweet taste transduction // J. Biol. Chem. 2002. V. 277. P. 1–4. https://doi.org/10.1074/jbc.R100054200
  90. Margolskee R.F., Dyer J., Kokrashvili Z. et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1 // Proc. Natl. Acad. Sci. USA. 2007. V. 38. P. 15075–15080. https://doi.org/10.1073/pnas.0706678104
  91. Maruyama Y., Pereira E., Margolskee R.F., Chaudhari N., Roper S.D. Umami responses in mouse taste cells indicate more than one receptor // J. Neurosci. 2006. V. 26. P. 2227–2234. https://doi.org/10.1523/JNEUROSCI.4329-05.2006
  92. Masubuchi Y., Nakagawa Y., Ma J. et al. A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells // PLoS ONE. 2013. V. 8. P. e54500. https://doi.org/10.1371/journal.pone.0054500
  93. Masubuchi Y., Nakagawa Y., Medina J. et al. Correction: T1R3 homomeric sweet taste receptor regulates adipogenesis through Gαs-mediated microtubules disassembly and Rho activation in 3T3-L1 cells // PLoS One. 2017. V. 12(7). P. e0181293. https://doi.org/10.1371 /journal.pone.0181293
  94. McCaughey S.A. The taste of sugars // Neurosc. and Biobehavioral Reviews. 2008. V. 32(5). P. 1024–1043. https://doi.org/10.1016/j.neubiorev.2008.04.002
  95. Medina A., Nakagawa Y., Ma J. et al. Expression of the glucose-sensing receptor T1R3 in pancreatic islet: changes in the expression levels in various nutritional and metabolic states // Endocr. J. 2014. V. 61(8). P. 797–805. https://doi.org/10.1507/endocrj.ej14-0221
  96. Meier J.J., Nauck M.A. Glucagon-like peptide 1(GLP-1) in biology and pathology // Diabetes Metab. Res. Rev. 2005. V. 21. P. 91–117. https://doi.org/10.1002/dmrr.538
  97. Meijer A.J., Lorin S., Blommaart E.F. et al. Regulation of autophagy by amino acids and MTOR-dependent signal transduction // Amino Acids. 2015. V. 47. P. 2037–2063. https://doi.org/10.1007/s00726-014-1765-4
  98. Miki T., Liss B., Minami K. et al. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis // Nature Neurosc. 2001. V. 4(5). P. 507–512. https://doi.org/10.1038/87455
  99. Morgan E.L., Mace O.J., Affleck J.A. et al. Apical GLUT2 and Cav1.3: regulation of rat intestinal glucose and calcium absorption // J. Physiol. 2007. V. 580. P. 593–604. https://doi.org/10.1113/jphysiol.2006.124768
  100. Morgan E.L., Mace O.J., Helliwell P. A. et al. A role for Cav1.3 in rat intestinal calcium absorption // Biochem. Biophys. Res. Commun. 2003. V. 312. P. 487–493. https://doi.org/10.1016/j.bbrc.2003.10.138
  101. Mori H., Inoki K., Opland D. et al. Critical roles for the TSC-mTOR pathway in beta-cell function // Am. J. Physiol. 2009. V. 297(5). P. 1013–1022. https://doi.org/10.1152/ajpendo.00262.2009
  102. Mueckler M., Thorens B. The SLC2 (GLUT) family of membrane transporters // Mol. Asp. Med. 2013. V. 34. P. 121–138. https://doi.org/10.1016/j.mam.2012.07.001
  103. Mueller K.L., Hoon M.A., Erlenbach I. et al. The receptors and logic for bitter taste // Nature. 2005. V. 434. P. 225–229. https://doi.org/10.1038/nature03352
  104. Murovets V.O., Bachmanov A.A., Zolotarev V.A. Impaired glucose metabolism in mice lacking the Tas1r3 taste receptor gene. PLoS ONE. 2015. V. 10. № 6. P. e0130997. https://doi.org/10.1371/journal.pone.0130997
  105. Murovets V.O., Lukina E.A., Sozontov E.A. et al. Allelic variation of the Tas1r3 taste receptor gene affects sweet taste responsiveness and metabolism of glucose in F1 mouse hybrids // PLoS ONE. 2020. V. 15. № 7. P. e0235913. https://doi.org/10.1371/journal.pone.0235913
  106. Nakagawa Y., Nagasawa M., Mogami H. et al. Multimodal function of the sweet taste receptor expressed in pancreatic β-cells: Generation of diverse patterns of intracellular signals by sweet agonists // Endocr. J. 2013. V. 60(10). P. 1191–1206. https://doi.org/10.1507/endocrj.ej13-0282
  107. Nakagawa Y., Nagasawa M., Yamada S. et al. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion // PLoS ONE. 2009. V. 4(4). P. e5106. https://doi.org/10.1371/journal.pone.0005106
  108. Nakagawa Y., Ohtsu Y., Nagasawa M. et al. Glucose promotes its own metabolism by acting on the cell-surface glucose-sensing receptor T1R3 // Endocr. J. 2014. V. 61. P. 119–131. https://doi.org/10.1507/endocrj.ej13-0431
  109. Nakamura Y., Sanematsu K., Ohta R. et al. Diurnal variation of human sweet taste recognition thresholds is correlated with plasma leptin levels // Diabetes. 2008. V. 57. P. 2661–2665. https://doi.org/10.2337/db07-1103
  110. Nelson G., Hoon M.A., Chandrashekar J. et al. Mammalian sweet taste receptors // Cell. 2001. V. 106. P. 381–390. https://doi.org/10.1016/s0092-8674(01)00451-2
  111. Nie, Y., Vigues, S., Hobbs, J. R. et al. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli // Curr. Biol. 2005. V. 15. P. 1948–1952. https://doi.org/10.1016/j.cub.2005.09.037
  112. O’Brien P., Hewett R., Corpe C. Sugar sensor genes in the murine gastrointestinal tract display a cephalocaudal axis of expression and a diurnal rhythm // Physiol. Genomics. 2018. V. 50. P. 448–458. https://doi.org/10.1152/physiolgenomics.00139.2017
  113. O'Malley D., Reimann F., Simpson A.K., Gribble F.M. Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing // Diabetes. 2006. V. 55. № 12. P. 3381–3386. https://doi.org/10.2337/db06-0531
  114. Orci L., Unger R.H., Ravazzola M. et al. Reduced b-cell glucose transporter in new onset diabetic BB rats // J. Clin. Investig. 1990. V. 86. P. 1615–1622. https://doi.org/10.1172/JCI114883
  115. Oya M., Suzuki H., Watanabe Y. et al. Amino acid taste receptor regulates insulin secretion in pancreatic β-cell line MIN6 cells // Genes to Cells. 2011. V. 16(5). P. 608–616. https://doi.org/10.1126/scisignal.2003325
  116. Polakof S., Soengas J.L. Evidence of sugar sensitive genes in the gut of a carnivorous fish species // Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2013 V. 166(1). P. 58–64. https://doi.org/10.1016/j.cbpb.2013.07.003
  117. Raliou M., Wiencis A., Pillias A.M. et al. Nonsynonymous single nucleotide polymorphisms in human tas1r1 tas1r3 and mGluR1 and individual taste sensitivity to glutamate // Am. J. Clin. Nutr. 2009. V. 90. P. 789–799. https://doi.org/10.3945/ajcn.2009.27462P
  118. Ramos-Lopez O., Panduro A., Martinez-Lopez E. et al. Sweet taste receptor TAS1R2 polymorphism (Val191Val) is associated with a higher carbohydrate intake and hypertriglyceridemia among the population of West Mexico // Nutrients. 2016. V. 8(2). P 101. https://doi.org/10.3390/nu8020101
  119. Reed D.R., Bachmanov A.A., Tordoff M.G. Forty mouse strain survey of body composition // Physiol. Genomics. 2007. V. 91(5). P. 593–600. https://doi.org/10.1016/j.physbeh.2007.03.026
  120. Reed D.R., Li S., Li X. et al. Polymorphisms in the taste receptor gene (Tas1r3) region are associated with saccharin preference in 30 mouse strains // J. Neurosci. 2004. V. 24(4). P. 938–946. https://doi.org/10.1523/JNEUROSCI.1374-03.2004
  121. Rehfeld J.F. The origin and understanding of the incretin concept // Front. Endocrinol. 2018. V. 9. P. 387. https://doi.org/10.3389/fendo.2018.00387
  122. Reimann F., Habib A.M., Tolhurst G. et al. Glucose sensing in L cells: A primary cell study // C. Met. 2008. V. 8(6). P. 532–539. https://doi.org/10.1016/j.cmet.2008.11.002
  123. Ren X., Zhou L., Terwilliger R. et al. Sweet taste signaling functions as a hypothalamic glucose sensor // Front. Integr. Neurosci. 2009. V. 3. P. 12. https://doi.org/10.3389/neuro.07.012.2009
  124. Robino A., Bevilacqua L., Pirastu N. et al. Polymorphisms in sweet taste genes (TAS1R2 and GLUT2), sweet liking, and dental caries prevalence in an adult Italian population // Genes Nutr. 2015. V. 10. № . P. 485. https://doi.org/10.1007/s12263-015-0485-z
  125. Roper S.D. Signal transduction and information processing in mammalian taste buds // Pflügers Archiv. 2007. V. 454. P. 759–776. https://doi.org/10.1007/s00424-007-0247-x
  126. Rozengurt N., Wu S.V., Chen M.C. et al. Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon // Am. J. Physiol. Gastrointest. Liver Physiol. 2006. V. 291(5). P. 792–802. https://doi.org/10.1152/ajpgi.00074.2006
  127. Sabek O.M., Nishimoto S.K., Fraga D. et al. Osteocalcin effect on human β-Cells mass and function // Endocrinology. 2015. V. 156(9). P. 3137–3146. https://doi.org/10.1210/EN.2015-1143
  128. Sainz E., Cavenagh M.M., LopezJimenez N.D. et al. The G-protein coupling properties of the human sweet and amino acid taste receptors // Dev. Neurobiol. 2007. V. 67. P. 948–959. https://doi.org/10.1002/dneu.20403
  129. Schermerhorn T. Normal glucose metabolism in carnivores overlaps with diabetes pathology in non-carnivores // Front. Endocrinol. 2013. V. 4. P. 188. https://doi.org/10.3389/fendo.2013.00188
  130. Schuit F.C., Huypens P., Heimberg H. et al. Glucose sensing in pancreatic β-cells: A model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus // Diabetes. 2001. V. 50(1). P. 1–11. https://doi.org/10.2337/diabetes.50.1.1
  131. Sclafani A., Zukerman S., Ackroff K. Residual Glucose Taste in T1R3 Knockout but not TRPM5 Knockout Mice // Physiol. Behav. 2020. V. 222. P. 112945. https://doi.org/10.1016/j.physbeh.2020.112945
  132. Shahbandi A.A., Choo E., Dando R. Receptor regulation in taste: can diet influence how we perceive foods? // J. Multidiscip. Sci. J. 2018. V. 1. P. 106–115. https://doi.org/10.3390/j1010011
  133. Sigoillot M., Brockhoff A., Meyerhof W. et al. Sweet-taste-suppressing compounds: Current knowledge and perspectives of application // Applied MicroBiol. and Biotechnology. 2012. V. 96(3). P. 619–630. https://doi.org/10.1007/s00253-012-4387-3
  134. Simon B.R., Learman B.S., Parlee S.D. et al. Sweet taste receptor deficient mice have decreased adiposity and increased bone mass // PLoS ONE. 2014. V. 9(1). P. e86454. https://doi.org/10.1371/journal.pone.0086454
  135. Simon B.R., Parlee S.D., Learman B.S. et al. Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors // J. Biol. Chem. 2013. V. 288. P. 32475–32489. https://doi.org/10.1074/jbc.M113.514034
  136. Smith K.R., Hussain T., Karimian Azari E. et al. Disruption of the sugar-sensing receptor T1R2 attenuates metabolic derangements associated with diet-induced obesity // Am. J. Physiol. Endocrinol. Metab. 2016. V. 310(8). P. E688-E698. https://doi.org/10.1152/ajpendo.00484.2015
  137. Spielman A.I. Gustducin and its role in taste // J. Dent. Res. 1998. V. 77. P. 539–544. https://doi.org/10.1177/00220345980770040601
  138. Steensels S., Vancleef L., Depoortere I. The sweetener-sensing mechanisms of the ghrelin cell // Nutrients. 2016. V. 8(12). P. 795. https://doi.org/10.3390/nu8120795
  139. Steinert R.E., Gerspach A.C., Gutmann H. et al. The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) // Clin. Nutr. 2011. V. 30(4). P. 524–532. https://doi.org/10.1016/j.clnu.2011.01.007
  140. Sternini C., Anselmi L., Rozengurt E. Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing // Current Opinion in Endocrinology Diabetes & Obesity. 2008. V. 15. P. 73–78. https://doi.org/10.1097/MED.0b013e3282f43a73
  141. Straub S.G., Sharp G.W. Glucose-stimulated signaling pathways in biphasic insulin secretion // Diabetes/Metab. Research and Reviews. 2002. V. 18(6). P. 451–463. https://doi.org/10.1002/dmrr.329
  142. Sutherland K., Young R.L., Cooper N.J. et al. Phenotypic characterization of taste cells of the mouse small intestine // Am. J. Physiol. Gastrointestinal and Liver Physiology. 2007. V. 292(5). P. 1420–1428. https://doi.org/10.1152/ajpgi.00504.2006
  143. Szoke E., Shrayyef M.Z., Messing S. et al. Effect of aging on glucose homeostasis: accelerated deterioration of beta cell function in individuals with impaired glucose tolerance // Diabetes Care. 2008. V. 31(3). P. 539–543. https://doi.org/10.2337/dc07-1443
  144. Talavera K., Yasumatsu K., Voets T. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste // Nature. 2005. V. 15. P. 1022–1025. https://doi.org/10.1038/nature04248
  145. Thorens B. GLUT2 glucose sensing and glucose homeostasis // Diabetologia. 2015. V. 58. P. 221–232. https://doi.org/10.1007/s00125-014-3451-1
  146. Thorens B., Guillam M.T., Beermann F. et al. Transgenic reexpression of GLUT1 or GLUT2 in pancreatic beta cells rescues GLUT2-null mice from early death and restores normal glucose-stimulated insulin secretion // J. Biol. Chem. 2000. V. 275. P. 23751–23758. https://doi.org/10.1074/jbc.M002908200
  147. Thorens B., Weir G.C., Leahy J.L. et al. Reduced expression of the liver/beta-cell glucose transporter isoform in glucose-insensitive pancreatic beta cells of diabetic rats // Proc. Natl. Acad. Sci. USA. 1990. V. 87. P. 6492–6496. https://doi.org/10.1073/pnas.87.17.6492
  148. Thorens B., Wu Y., Leahy J.L. et al. The loss of GLUT2 expression by glucose-unresponsive beta cells of db/db mice is reversible and is induced by the diabetic environment // J. Clin. Investig. 1992. V. 90. P. 77–85. https://doi.org/10.1172/JCI115858
  149. Tobin V., Le G., M F. et al. Insulin internalizes GLUT2 in the enterocytes of healthy but not insulin-resistant mice // Diabetes. 2008. V. 57(3). P. 555–562. https://doi.org/10.2337/db07-0928
  150. Toda Y., Nakagita T., Hayakawa T. et al. Two distinct determinants of ligand specificity in T1R1/T1R3 (the umami taste receptor) // J. Biol. Chem. 2013. V. 288. Iss. 52. P. 36863–36877. https://doi.org/10.1074/jbc.M113.494443
  151. Treesukosol Y., Smith K.R., Spector A.C. The functional role of the T1R family of receptors in sweet taste and feeding // Physiol. Behav. 2011. V. 105(1). P. 14–26. https://doi.org/10.1016/j.physbeh.2011.02.030
  152. Tritschler S., Theis F.J., Lickert H. et al. Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas // Mol. Metab. 2017. V. 6(9). P. 974–990. https://doi.org/10.1016/j.molmet.2017.06.021
  153. Udagawa H., Hiramoto M., Kawaguchi M. et al. Characterization of the taste receptor-related G-protein α-gustducin in pancreatic β-cells // J. Diabetes Investig. 2020. V. 11(4). P. 814–822. https://doi.org/10.1111/jdi.13214
  154. von Molitor E., Riedel K., Krohn M. et al. An alternative pathway for sweet sensation: Possible mechanisms and physiological relevance // Pflugers Arch. 2020. V. 472(12). P. 1667–1691. https://doi.org/10.1007/s00424-020-02467-1
  155. von Molitor E., Riedel K., Krohn M. et al. Sweet taste is complex: signaling cascades and circuits involved in sweet sensation // Front. Hum. Neurosci. 2021. V. 15. P. 667709. https://doi.org/10.3389/fnhum.2021.667709
  156. Wang S.Y., Chi M., Li L. et al. Studies with GIP/Ins cells indicate secretion by gut K cells is KATP channel independent // Am. J. Physiol. Endocrinol. 2003. V. 284. P. 988–1000. https://doi.org/10.1152/ajpendo.00398.2002
  157. Wang Y., Liu J., Wu H. et al. Amino acids regulate mTOR pathway and milk protein synthesis in a mouse mammary epithelial cell line is partly mediated by T1R1/T1R3 // Eur. J. Nutr. 2017. V. 56(8). P. 2467–2474. https://doi.org/10.1007/s00394-016-1282-1
  158. Wauson E.M., Guerra M.L., Dyachok J. et al. Differential regulation of ERK1/2 and mTORC1 through T1R1/T1R3 in MIN6 Cells // Mol. Endocrinology. 2015. V. 29(8). P. 1114–1122. https://doi.org/10.1210/ME.2014-1181
  159. Wauson E.M., Zaganjor E., Lee A. et al. The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy // Mol. Cell. 2012. V. 47(6). P. 851–862. https://doi.org/10.1016/j.molcel.2012.08.001
  160. Weir G.C., Clore E.T., Zmachinski C.J. et al. Islet secretion in a new experimental model for non-insulin-dependent diabetes // Diabetes. 1981. V. 30(7). P. 590–595. https://doi.org/10.2337/diab.30.7.590
  161. Yan W., Sunavala G., Rosenzweig S. et al. Bitter taste transduced by PLC-beta(2)-dependent rise in IP(3) and alpha-gustducin-dependent fall in cyclic nucleotides // Am. J. Physiol. Cell. Physiol. 2001. V. 280. P. 742–751. https://doi.org/10.1152/ajpcell.2001.280.4.C742
  162. Yasumatsu K., Ohkuri T., Yoshida R. et al. Sodium-glucose cotransporter 1 as a sugar taste sensor in mouse tongue // Acta Physiol. 2020. V. 230(4). P. e13529. https://doi.org/10.1111/apha.13529
  163. Yee K.K., Sukumaran S.K., Kotha R. et al. Glucose transporters and ATP-gated K +(KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 5431–5436. https://doi.org/10.1073/pnas.1100495108
  164. Zhang Y., Hoon M.A., Chandrashekar J. et al. Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways // Cell. 2003. V. 112(3). P. 293–301. https://doi.org/10.1016/s0092-8674(03)00071-0
  165. Zhao G.Q., Zhang Y., Hoon M.A. et al. The receptors for mammalian sweet and umami taste // Cell. 2003. V. 115(3). P. 255–266. https://doi.org/10.1016/s0092-8674(03)00844-4
  166. Zhao H., Li J., Zhang J. Molecular evidence for the loss of three basic tastes in penguins // Current Biology 2015. V. 25.P. 141–142. https://doi.org/10.1016/j.cub.2015.01.026
  167. Zhao H., Yang J.R., Xu H. et al. Pseudogenization of the umami taste receptor gene Tas1r1 in the giant panda coincided with its dietary switch to bamboo // Mol. Biol. Evol. 2010. V. 27(12). P. 2669–2273. https://doi.org/10.1093/molbev/msq153
  168. Zhou Y., Ren J., Song T. et al. Methionine regulates mTORC1 via the T1R1/T1R3-PLC-Ca2+-ERK1/2 signal transduction process in C2C12 cells // International J. of Mol. Sciences. 2016. V. 17(10). P. 1684. https://doi.org/10.3390/ijms17101684

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the canonical and non-canonical transduction cascades activated by hetero- and homodimers of membrane taste receptor proteins of the T1R family associated with G-protein subunits: α (gustducin – αgust and others), β and γ. Interaction of taste enzymatic cascades with glucokinase – KATP-dependent metabolic detector of glucose. Designations: AC – adenylate cyclase; Akt – serine/threonine kinase; DAG – diacylglycerol; ERK1/2 – extracellular signal-regulated kinase 1/2; G6P – glucose-6-phosphate; GCK – glucokinase; GEF-H1 – guanine nucleotide exchange factor H1; GIP – glucose-dependent insulinotropic peptide; GLP-1 - glucagon-like peptide 1; GLUT2 - glucose transporter 2; INS - insulin; IP3 - inositol-1,4,5-triphosphate; KATP - ATP-sensitive potassium channel; mTORC1 - mammalian target of rapamycin subunit C1; PDE - phosphodiesterase; PI (4; 5) P2 - phosphatidylinositol-4,5-diphosphate; PI3K - phosphatidylinositol-3-kinase; PKС, PKD - protein kinase C and D; PLCβ2 - phospholipase C-β2; Px1 - pannexin 1 channel; Raptor - regulatory protein of the mTOR complex; Rheb - GTP-binding protein of the Ras gene superfamily; RhoGTPase - serine/threonine GTPase; RSK – ribosomal S6 kinase; SGLT1 – sodium-glucose cotransporter 1; TRPM5 – calcium-dependent non-selective cation channel of alternating voltage; TSC1/2 – tuberin complex with hamartin; tubGTPase – tubulin GTPase; VDCC – voltage-dependent calcium channel.

Download (472KB)

Copyright (c) 2024 Russian Academy of Sciences