The involvement of T1R family receptors expressed outside the oral cavity in the regulation of metabolism
- Authors: Murovets V.O.1, Sozontov E.A.1, Zolotarev V.A.1
-
Affiliations:
- Pavlov Institute of Physiology, Russian Academy of Sciences
- Issue: Vol 55, No 4 (2024)
- Pages: 91-112
- Section: Articles
- URL: https://ter-arkhiv.ru/0301-1798/article/view/676187
- DOI: https://doi.org/10.31857/S0301179824040052
- EDN: https://elibrary.ru/AHAEWK
- ID: 676187
Cite item
Abstract
The membrane T1R taste receptor family interacts with sweet substances – carbohydrates, artificial sweeteners and some amino acids. An important result of research in the 21st century was the discovery of abundant expression of these receptors outside of the oral cavity, mainly in cells actively involved in metabolic processes: enteroendocrine cells of the intestine, pancreatic β-cells, adipose and bone tissue, etc. This review integrates and analyzes current data on the role of extraoral T1R receptors in the regulation of metabolism, cell growth and differentiation, which is achieved through modulation of hormone secretion (insulin, GLP-1, GIP), activity of membrane transporters and cell growth and proliferation factors. T1R mediated cellular responses to nutrients, mechanisms of signal transduction, effects on inositol triphosphate, cAMP and intracellular Ca2+ levels, stimulatory effects on glucose transporters SGLT1 and GLUT2, effects on mTOR and hormone secretion are described. The interaction of membrane receptor mechanisms and metabolic detection of glucose by the ATP/ADP ratio in the cell cytoplasm is also discussed. Putative evolutionary adaptation of metabolic processes related to nutrition and manifested in polymorphism of genes encoding T1R proteins is presented. It is suggested that extraoral taste receptors for sweet substances and amino acids may be a target for therapeutic interventions in obesity, hyperglycemia, insulin resistance, and hepatosteatosis.
Full Text

About the authors
V. O. Murovets
Pavlov Institute of Physiology, Russian Academy of Sciences
Author for correspondence.
Email: murovetsvo@infran.ru
Russian Federation, Saint Petersburg, 199034
E. A. Sozontov
Pavlov Institute of Physiology, Russian Academy of Sciences
Email: sozontovea@infran.ru
Russian Federation, Saint Petersburg, 199034
V. A. Zolotarev
Pavlov Institute of Physiology, Russian Academy of Sciences
Email: zolotarevva@infran.ru
Russian Federation, Saint Petersburg, 199034
References
- Муровец В.О., Бачманов А.А., Травников С.В. и др. Участие рецепторного белка TAS1R3 в регуляции обмена глюкозы у мышей при разных уровнях гликемии // Журн. эвол. биохим. и физиол. 2014. Т. 50. № 4. С. 296–304. https://doi.org/10.1134/S0022093014040061
- Муровец В.О., Лукина Е.А., Золотарев В.А. Влияние полиморфизма гена Tas1r3 на предпочтение и потребление сахарозы и низкокалорийных сахарозаменителей у межлинейных гибридов мышей первого поколения // Журн. эвол. биохим. и физиол. 2018. Т. 54. № 3. С. 194–204.
- Муровец В.О., Созонтов Е.А., Андреева Ю.В. и др. Влияние рецепторного белка T1R3 на глюконеогенез и жировой обмен у мышей // Росс. физиол. журн. им. И. М. Сеченова. 2016. Т. 102. С. 668–679.
- Муровец В.О., Созонтов Е.А., Андреева Ю.В. и др. Влияние полиморфизма гена Tas1r3 на метаболизм глюкозы и липидов у межлинейных гибридов мышей // Росс. физиол. журн. им. И. М. Сеченова. 2018. Т. 104. № 3. С. 338–350.
- Муровец В.О., Созонтов Е.А., Зачепило Т.Г. Влияние вкусового рецепторного белка T1R3 на развитие островковой ткани поджелудочной железы мыши // Докл. Акад. наук. 2019. Т. 484. № 1. С. 117–120. https://doi.org/10.31857/S0869-56524841117-120
- Муровец В.О., Лукина Е.А., Золотарев В.А. Сладкий вкус: от рецепции к восприятию // Успехи физиол. наук. 2023. Т. 54. № 4. С. 72–92. https://doi.org/10.31857/S0301179823040057
- Antinucci M., Risso D. A matter of taste: Lineage-specific loss of function of taste receptor genes in vertebrates // Front. Mol. Biosci. 2017. V. 4. P. 81. https://doi.org/10.3389 /fmolb.2017.00081
- Bachmanov A. A., Bosak N. P., Floriano W. B. et al. Genetics of sweet taste preferences // Flavour and Fragr. J. 2011. V. 26. P. 286–294. https://doi.org/10.1002/ffj.2074
- Bachmanov A. A., Bosak N. P., Lin C. et al. Genetics of Taste Receptors // Curr. Pharm. Des. 2014. V. 20. P. 2669–2683. https://doi.org/10.2174/13816128113199990566
- Bachmanov A.A., Beauchamp G.K. Taste receptor genes // Annu. Rev. Nutr. 2007. V. 27. P. 389–414. https://doi.org/10.1146/annurev.nutr.26.061505.111329
- Bachmanov A.A., Li. X., Reed D.R. et al. Positional cloning of the mouse saccharin preference (Sac) locus // Chem. Senses. 2001. V. 26. Iss. 7. P. 925–933. https://doi.org/10.1093/chemse/26.7.925
- Bachmanov A.A., Reed D.R., Ninomiya Y. et al. Sucrose consumption in mice: major influence of two genetic loci affecting peripheral sensory responses // Mamm. Genome. 1997. V. 8(8). P. 545–548. https://doi.org/10.1007/s003359900500
- Bachmanov A.A., Tordoff M.G., Beauchamp G.K. Sweetener preference of C57BL/6ByJ and 129P3/J. mice // Chem. Senses. 2001. V. 26. Iss. 7. P. 905–913. https://doi.org/10.1093/chemse/26.7.905
- Balcazar N., Sathyamurthy A., Elghazi L. et al. mTORC1 Activation Regulates β-Cell Mass and Proliferation by Modulation of Cyclin D2 Synthesis and Stability // J. Biol. Chem. 2009. V. 284(12). P. 7832–7842. https://doi.org/10.1074/jbc.M807458200
- Baldwin M.W., Toda Y., Nakagita T. et al. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor // Science. 2014. V. 345. Iss. 6199. P. 929–933. https://doi.org/10.1126/science.1255097
- Batchelor D.J., Al-Rammahi M., Moran A.W. et al. Sodium/glucose cotransporter-1, sweet receptor, and disaccharidase expression in the intestine of the domestic dog and cat: two species of different dietary habit // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011. V. 300(1). P. R67–75. https://doi.org/10.1152/ajpregu.00262.2010
- Bathina S., Faniyan T.S., Bainbridge L. et al. Normal β-Cell Glut2 expression is not required for regulating glucose-stimulated insulin secretion and systemic glucose homeostasis in mice // Biomolecules. 2023. V. 13(3). P. 540. https://doi.org/10.3390/biom13030540
- Butler A.E., Janson J., Soeller W.C. et al. Increased β-Cell apoptosis prevents adaptive increase in β-cell mass in mouse model of type 2 diabetes // Diabetes. 2003. V. 52(9). P. 2304–2314. https://doi.org/10.2337/diabetes.52.9.2304
- Cai W., He S., Liang X.F. et al. Methylation of T1R1 gene in the vegetarian adaptation of grass carp Ctenopharyngodon idella // Sci Rep. 2018. V. 8(1). P. 6934. https://doi.org/10.1038/s41598-018-25121-4
- Calvo S.S.-C., Egan J.M. The endocrinology of taste receptors // Nat. Rev. Endocrinol. 2015. V. 11(4). P. 213–227. https://doi.org/10.1038/nrendo.2015.7
- Cappariello A., Ponzetti M., Rucci N. The “soft” side of the bone: unveiling its endocrine functions // Horm. Mol. Biol. Clin. Investig. 2016. V. 28(1). P. 5–20. https://doi.org/10.1515/hmbci-2016-0009
- Chamouni A., Schreiweis C., Oury F. Bone, brain & beyond // Rev. Endocr. Metab. Disord. 2015. V. 16. P. 99–113. https://doi.org/10.1007/s11154-015-9312-5
- Chandrashekar J., Hoon M.A., Ryba, N. et al. The receptors and cells for mammalian taste // Nature. 2006. V. 444. P. 288–294. https://doi.org/10.1038/nature05401
- Chen K., Yan J., Suo Y. et al. Nutritional status alters saccharin intake and sweet receptor mRNA expression in rat taste buds // Brain Res. 2010. V. 1325. P.53–62. https://doi.org/10.1016/j.brainres.2010.02.026
- Clapp T.R., Trubey K.R., Vandenbeuch A. et al. Tonic activity of Galpha-gustducin regulates taste cell responsivity // FEBS Lett. 2008. V. 582. P. 3783–3787. https://doi.org/10.1016/j.febslet.2008.10.007
- Colsoul B., Schraenen A., Lemaire K. et al. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5–/– mice // Proc. Natl. Acad. Sci. USA. 2010. V. 107. P. 5208–5213. https://doi.org/10.1073/pnas.0913107107
- Craig T. J., Ashcroft F. M., Proks P. How ATP inhibits the open K(ATP) channel // J. Gen. Physiol. 2008. V. 132 (1). P. 131–144. https://doi.org/10.1085/jgp.200709874
- Damak S., Rong M., Yasumatsu K. et al. Detection of sweet and umami taste in the absence of taste receptor T1r3 // Science. 2003. V. 301. P. 850–853. https://doi.org/10.1126/science.1087155
- Daniel H., Zietek T. Taste and move: Glucose and peptide transporters in the gastrointestinal tract // Exp. Physiol. 2015. V. 100(12). P. 1441–1450. https://doi.org/10.1113/EP085029
- Delay E.R., Hernandez N.P., Bromley K. et al. Sucrose and monosodium glutamate taste thresholds and discrimination ability of T1R3 knockout mice // Chem. Senses. 2006. V. 31(4). P. 351–357. https://doi.org/10.1093/chemse/bjj039
- Dias A.G., Eny K.M., Cockburn M. et al. Variation in the TAS1R2 gene, sweet taste perception and intake of sugars // J. Nutrigenet. Nutrigenomics. 2015. V. 8. №. 2. P. 81–90. https://doi.org/10.1159/000430886
- Diez-Sampedro A., Hirayama B.A., Osswald C. et al. A glucose sensor hiding in a family of transporters // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 11753–11758. https://doi.org/10.1073/pnas.1733027100
- Ding L., Yin Y., Han L. et al. TSC1-mTOR signaling determines the differentiation of islet cells // J. Endocr. 2017. V. 232(1). P. 59–70. https://doi.org/10.1530/JOE-16-0276
- Dotson C.D., Geraedts M.C., Munger S.D. Peptide regulators of peripheral taste function // Semin. Cell. Dev. Biol. 2013. V. 24. P. 232–239. https://doi.org/10.1016/j.semcdb.2013.01.004
- Drucker D.J. Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls // Diabetes. 2013. V. 62(10). P. 3316–3323. https://doi.org/10.2337/db13-0822
- DuBois G.E. Molecular mechanism of sweetness sensation // Physiol. Behav. 2016. V. 164. P. 453–463. https://doi.org/10.1016/j.physbeh.2016.03.015
- Duca F.A., Covasa M. Current and emerging concepts on the role of peripheral signals in the control of food intake and development of obesity // Br. J. Nutr. 2012. V. 1. P. 16. https://doi.org/10.1017/S0007114512000529
- Dutta Banik D., Martin L.E., Freichel M. et al. TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells // Proc. Natl. Acad. Sci. U S A. 2018. V. 115(4). P. E772–E781. https://doi.org/doi: 10.1073/pnas.1718802115
- Eaton M.S., Weinstein N., Newby J.B. et al. Loss of the nutrient sensor TAS1R3 leads to reduced bone resorption // J. Physiol. Biochem. 2018. V. 74(1). P. 3–8. https://doi.org/10.1007 /s13105-017-0596-7
- Elson A.E., Dotson C.D., Egan J.M., Munger S.D. Glucagon signaling modulates sweet taste responsiveness // FASEB J. 2010. V. 24. P. 3960–3969. https://doi.org/10.1096/fj.10-158105
- Eny K.M., Wolever T.M., Corey P.N., El-Sohemy A. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations // Am. J. Clin. Nutr. 2010. V. 92. Iss. 6. P. 1501–1510. https://doi.org/10.3945/ajcn.2010.29836
- Eriksson L., Esberg A., Haworth S., Holgerson P.L., Johansson I. Allelic variation in taste genes is associated with taste and diet preferences and dental caries // Nutrients. 2019. V. 11. P. 1491. https://doi.org/10.3390/nu11071491
- Fioramonti X., Lorsignol A., Taupignon A. et al. A new ATP-sensitive K+ channel-independent mechanism is involved in glucose-excited neurons of mouse arcuate nucleus // Diabetes. 2004. V. 53(11). P. 2767–2775. https://doi.org/10.2337/diabetes.53.11.2767
- Fuller J.L. Single-locus control of saccharin preference in mice // J Hered. 1974. V. 65(1). P. 33–36. https://doi.org/10.1093/oxfordjournals.jhered.a108452
- Fushan A.A., Simons C.T., Slack J P., Drayna D. Association between common variation in genes encoding sweet taste signaling components and human sucrose perception // Chem. Senses. 2010. V. 35. Iss. 7. P. 579–592. https://doi.org/10.1093 /chemse /bjq063
- Fushan A.A., Simons C.T., Slack J.P. et al. Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose // Current Biol. 2009. V. 19(15). P. 1288–1293. https://doi.org/10.1016/ j.cub.2009.06.015
- Garcia-Bailo B., Toguri C., Eny M. et al. Genetic variation in taste and its influence on food selection // OMICS: A J. of Integrative Biol. 2009. V. 13(1). P. 69–80. https://doi.org/10.1089/omi.2008.0031
- Gembal M., Gilon P., Henquin J.C. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse β-cells // J. Clin. Investig. 1992. V. 89(4). P. 1288–1295. https://doi.org/10.1172/JCI115714
- Glendinning J.I., Chyou S., Lin I. Initial licking responses of mice to sweeteners: effects of Tas1r3 polymorphisms // Chem. Senses. 2005. V. 30. P. 601–614. https://doi.org/10.1093/chemse/bji054
- Glendinning J.I., Gillman J., Zamer H. et al. The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice // Physiol. Behav. 2012. V. 107(1). P. 50–58. https://doi.org/10.1016/j.physbeh.2012.05.023
- Gouyon F., Caillaud L., Carriere V. et al. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: a study in GLUT2-null mice // J. Physiol. 2003. V. 552. P. 823–832. https://doi.org/10.1113/jphysiol.2003.049247
- Greenberg D., McCaffery J., Potack J.Z. et al. Differential satiating effects of fats in the small intestine of obesity-resistant and obesity-prone rats // Physiol. Behav. 1999. V. 66. P. 621–626. https://doi.org/10.1016/s0031-9384(98)00336-9
- Habib A.M., Richards P., Rogers G.J. et al. Co-localisation and secretion of glucagon-like peptide 1 and peptide YY from primary cultured human L cells // Diabetologia. 2013. V. 56. P. 1413–1416. https://doi.org/10.1007/s00125-013-2887-z
- Hamano K., Nakagawa Y., Ohtsu Y. et al. Lactisole inhibits the glucose-sensing receptor T1R3 expressed in mouse pancreatic β-cells // J. Endocrinol. 2015. V. 226. P. 57–66. https://doi.org/10.1530/JOE-15-0102
- Herman M.A., Kahn B.B. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony // J. Clin. Investig. 2006. V. 116(7). P. 1767–1775. https://doi.org/10.1172/JCI29027
- Herness M.S. Vasoactive intestinal peptide-like immunoreactivity in rodent taste cells // Neurosci. 1989. V. 33. P. 411–419. https://doi.org/10.1016/0306-4522(89)90220-0
- Herness S., Zhao F.L. The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud // Physiol. Behav. 2009. V. 97. P. 581–591. https://doi.org/10.1016/j.physbeh.2009.02.043
- Herrera Moro Chao D., Argmann C., Van Eijk M. et al. Impact of obesity on taste receptor expression in extra-oral tissues: Emphasis on hypothalamus and brainstem // Sci. Rep. 2016. V. 6. P. 29094. https://doi.org/10.1038/srep29094
- Hiriart M., Aguilar–Bryan L. Channel regulation of glucose sensing in the pancreatic beta–cell // Am. J. Physiol. Endocrinol. 2008. V. 295(6). P. 1298–1306. https://doi.org/10.1152/ajpendo.90493.2008
- Hubbard K.B., Hepler J.R. Cell signalling diversity of the Gqalpha family of heterotrimeric G proteins // Cell Signal. 2006. V. 18(2). P. 135–150. https://doi.org/10.1016/j.cellsig.2005.08.004
- Inoue M., Glendinning J. I., Theodorides M. L. et al. Allelic variation of the Tas1r3 taste receptor gene selectively affects taste responses to sweeteners: evidence from 129.B6-Tas1r3 congenic mice // Physiol. Genomics 2007. V. 32. Iss. 1. P. 82–94. https://doi.org/10.1152/physiolgenomics.00161.2007
- Inoue M., Reed D.R., Li X. et al. Allelic variation of the Tas1r3 taste receptor gene selectively affects behavioral and neural taste responses to sweeteners in the F2 hybrids between C57BL/6ByJ and 129P3/J mice // J. Neurosci. 2004. V. 24(9). P. 2296–2303. https://doi.org/10.1523/JNEUROSCI.4439-03.2004
- Ishimaru Y. Molecular mechanisms of taste transduction in vertebrates // Odontology. 2009. V. 97. P. 1–7. https://doi.org/10.1007/s10266-008-0095-y
- Jang H.J., Kokrashvili Z., Theodorakis M.J. et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1 // Proc. Natl. Acad. Sci. USA. 2007. V. 104(38). P. 15069–15074. https://doi.org/10.1073/pnas.0706890104
- Jiang P., Josue J., Li X., et al. Major taste loss in carnivorous mammals // PNAS. 2012. V. 103. Iss. 13. P. 4956–4961. https://doi.org/10.1073/pnas.1118360109
- Katsuda Y., Ohta T., Miyajima K. et al. Diabetic complications in obese type 2 diabetic rat models // Exp. anim. 2014. V. 63(2). P. 121–132. https://doi.org/10.1538/expanim.63.121
- Kawai K., Sugimoto K., Nakashima K., Miura H., Ninomiya Y.C. Leptin as a modulator of sweet taste sensitivities in mice // Proc. Natl. Acad. Sci. US. 2000. V. 97. P. 11044–11049. https://doi.org/10.1073/pnas.190066697
- Kellett G.L., Brot-Laroche E. Apical GLUT2: A Major Pathway of Intestinal Sugar Absorption // Diabetes. 2005. V. 54(10). P. 3056–3062. https://doi.org/10.2337/diabetes.54.10.3056
- Kellett G.L., Brot-Laroche E., Mace O.J. et al. Sugar absorption in the intestine: the role of GLUT2 // Annu. Rev. Nutr. 2008. V. 28. P. 35–54. https://doi.org/10.1146/annurev.nutr.28.061807.155518
- Kellett G.L., Helliwell P. A. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane // Biochem. J. 2000. V. 350. P. 155–162. PMCID: PMC1221237
- Kim U.K., Wooding S., Riaz N. et al. Variation in the human TAS1R Taste receptor genes // Chem. Senses. 2006. V. 31. Iss. 7. P. 599–611. https://doi.org/10.1093/chemse/bjj065
- Kojima I., Nakagawa Y. The role of the sweet taste receptor in enteroendocrine cells and pancreatic β-cells // Diabetes Metab. J. 2011. V. 35(5). P. 451–457. https://doi.org/10.4093 /dmj.2011.35.5.451
- Kojima I., Nakagawa Y., Hamano K. et al. Glucose-sensing receptor T1R3: A new signaling receptor activated by glucose in pancreatic β-cells // Biol Pharm Bull. 2015. V. 38(5). P. 674–679. https://doi.org/10.1248/bpb.b14-00895
- Kojima I., Nakagawa Y., Ohtsu Y. et al. Sweet taste-sensing receptors expressed in pancreatic ß-cells: sweet molecules act as biased agonists // Endocrinology and Metab. 2014. V. 29. P. 12–19. http://doi.org/10.3803/EnM.2014.29.1.12
- Kokabu S., Lowery J.W., Toyono T. et al. On the emerging role of the taste receptor type 1 (T1R) family of nutrient-sensors in the musculoskeletal system // Molecules. 2017. V. 22. P. 469. https://doi.org/10.3390/molecules22030469
- Kokrashvili Z., Mosinger B., Margolskee R.F. T1R3 and alpha–gustducin in gut regulate secretion of glucagon–like peptide–1 // Ann. NY Acad. Sci. 2009a. V. 1170. P. 91–94. https://doi.org/10.1111/j.1749-6632.2009.04485.x
- Kokrashvili Z., Mosinger B., Margolskee R.F. Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones // Am. J. Clin. Nutr. 2009. V. 90(3). P. 822–825. https://doi.org/10.3945/ajcn.2009.27462T
- Kokrashvili Z., Yee K.K., Ilegems E. et al. Endocrine taste cells // Br. J. Nutr. 2014. V. 111(1). P. 23–29. https://doi.org/10.1017/s0007114513002262
- Kolesnikov S.S., Margolskee R.F. A cyclic-nucleotidesuppressible conductance activated by transducin in taste cells // Nature. 1995. V. 376(6535). P. 85–88. https://doi.org/10.1038/376085a0
- Kyriazis G.A., Smith K.R., Tyrberg B. et al. Sweet taste receptors regulate basal Insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice // Endocrinology. 2014. V. 155(6). P. 2112–2121. https://doi.org/10.1210/en.2013-2015
- Kyriazis G.A., Soundarapandian M.M., Tyrberg B. Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion // Proc. Natl. Acad. Sci. USA. 2012. V. 109(8). P. 524–532. https://doi.org/10.1073/pnas.1115183109
- Larsson M.H., Håkansson P., Jansen F.P. et al. Ablation of TRPM5 in mice results in reduced body weight gain and improved glucose tolerance and protects from excessive consumption of sweet palatable food when wed high caloric diets // PLoS One. 2015. V. 10(9). P. e0138373. https://doi.org/10.1371/journal.pone.0138373
- Li X., Inoue M., Reed D. R., Huque T. et al. High-resolution genetic mapping of the saccharin preference locus (Sac) and the putative sweet taste receptor (T1R1) gene (Gpr70) to mouse distal Chromosome 4 // Mamm. Genome. 2001. V. 12. № 1. P. 13–16. https://doi.org/10.1007/s003350010236
- Linnemann A.K., Baan M., Davis D.B. Pancreatic b-cell proliferation in obesity // Adv. Nutr. 2014. V. 5(3). P. 278–288. https://doi.org/10.3945/an.113.005488
- Liu S., Manson J.E. Dietary carbohydrates, physical inactivity, obesity, and the 'metabolic syndrome' as predictors of coronary heart disease // Curr. Opin. Lipidol. 2001. V. 12(4). P. 395–404. https://doi.org/10.1097/00041433-200108000-00005
- Mace O.J., Affleck J., Patel N. et al. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2 // J. Physiol. 2007a. V. 582. P. 379–392. https://doi.org/10.1113/jphysiol.2007.130906
- Mace O.J., Morgan E.L., Affleck J.A. et al. Calcium absorption by Cav1.3 induces terminal web myosin II phosphorylation and apical GLUT2 insertion in rat intestine // J. Physiol. 2007. V. 580. P. 605–616. https://doi.org/10.1113/jphysiol.2006.124784
- Maedler K., Schumann D.M., Schulthess F. et al. Aging correlates with decreased beta-cell proliferative capacity and enhanced sensitivity to apoptosis: a potential role for Fas and pancreatic duodenal homeobox-1 // Diabetes. 2006. V. 55. P. 2455–2462. https://doi.org/10.2337/db05-1586
- Margolskee R. F. Molecular mechanisms of bitter and sweet taste transduction // J. Biol. Chem. 2002. V. 277. P. 1–4. https://doi.org/10.1074/jbc.R100054200
- Margolskee R.F., Dyer J., Kokrashvili Z. et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1 // Proc. Natl. Acad. Sci. USA. 2007. V. 38. P. 15075–15080. https://doi.org/10.1073/pnas.0706678104
- Maruyama Y., Pereira E., Margolskee R.F., Chaudhari N., Roper S.D. Umami responses in mouse taste cells indicate more than one receptor // J. Neurosci. 2006. V. 26. P. 2227–2234. https://doi.org/10.1523/JNEUROSCI.4329-05.2006
- Masubuchi Y., Nakagawa Y., Ma J. et al. A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells // PLoS ONE. 2013. V. 8. P. e54500. https://doi.org/10.1371/journal.pone.0054500
- Masubuchi Y., Nakagawa Y., Medina J. et al. Correction: T1R3 homomeric sweet taste receptor regulates adipogenesis through Gαs-mediated microtubules disassembly and Rho activation in 3T3-L1 cells // PLoS One. 2017. V. 12(7). P. e0181293. https://doi.org/10.1371 /journal.pone.0181293
- McCaughey S.A. The taste of sugars // Neurosc. and Biobehavioral Reviews. 2008. V. 32(5). P. 1024–1043. https://doi.org/10.1016/j.neubiorev.2008.04.002
- Medina A., Nakagawa Y., Ma J. et al. Expression of the glucose-sensing receptor T1R3 in pancreatic islet: changes in the expression levels in various nutritional and metabolic states // Endocr. J. 2014. V. 61(8). P. 797–805. https://doi.org/10.1507/endocrj.ej14-0221
- Meier J.J., Nauck M.A. Glucagon-like peptide 1(GLP-1) in biology and pathology // Diabetes Metab. Res. Rev. 2005. V. 21. P. 91–117. https://doi.org/10.1002/dmrr.538
- Meijer A.J., Lorin S., Blommaart E.F. et al. Regulation of autophagy by amino acids and MTOR-dependent signal transduction // Amino Acids. 2015. V. 47. P. 2037–2063. https://doi.org/10.1007/s00726-014-1765-4
- Miki T., Liss B., Minami K. et al. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis // Nature Neurosc. 2001. V. 4(5). P. 507–512. https://doi.org/10.1038/87455
- Morgan E.L., Mace O.J., Affleck J.A. et al. Apical GLUT2 and Cav1.3: regulation of rat intestinal glucose and calcium absorption // J. Physiol. 2007. V. 580. P. 593–604. https://doi.org/10.1113/jphysiol.2006.124768
- Morgan E.L., Mace O.J., Helliwell P. A. et al. A role for Cav1.3 in rat intestinal calcium absorption // Biochem. Biophys. Res. Commun. 2003. V. 312. P. 487–493. https://doi.org/10.1016/j.bbrc.2003.10.138
- Mori H., Inoki K., Opland D. et al. Critical roles for the TSC-mTOR pathway in beta-cell function // Am. J. Physiol. 2009. V. 297(5). P. 1013–1022. https://doi.org/10.1152/ajpendo.00262.2009
- Mueckler M., Thorens B. The SLC2 (GLUT) family of membrane transporters // Mol. Asp. Med. 2013. V. 34. P. 121–138. https://doi.org/10.1016/j.mam.2012.07.001
- Mueller K.L., Hoon M.A., Erlenbach I. et al. The receptors and logic for bitter taste // Nature. 2005. V. 434. P. 225–229. https://doi.org/10.1038/nature03352
- Murovets V.O., Bachmanov A.A., Zolotarev V.A. Impaired glucose metabolism in mice lacking the Tas1r3 taste receptor gene. PLoS ONE. 2015. V. 10. № 6. P. e0130997. https://doi.org/10.1371/journal.pone.0130997
- Murovets V.O., Lukina E.A., Sozontov E.A. et al. Allelic variation of the Tas1r3 taste receptor gene affects sweet taste responsiveness and metabolism of glucose in F1 mouse hybrids // PLoS ONE. 2020. V. 15. № 7. P. e0235913. https://doi.org/10.1371/journal.pone.0235913
- Nakagawa Y., Nagasawa M., Mogami H. et al. Multimodal function of the sweet taste receptor expressed in pancreatic β-cells: Generation of diverse patterns of intracellular signals by sweet agonists // Endocr. J. 2013. V. 60(10). P. 1191–1206. https://doi.org/10.1507/endocrj.ej13-0282
- Nakagawa Y., Nagasawa M., Yamada S. et al. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion // PLoS ONE. 2009. V. 4(4). P. e5106. https://doi.org/10.1371/journal.pone.0005106
- Nakagawa Y., Ohtsu Y., Nagasawa M. et al. Glucose promotes its own metabolism by acting on the cell-surface glucose-sensing receptor T1R3 // Endocr. J. 2014. V. 61. P. 119–131. https://doi.org/10.1507/endocrj.ej13-0431
- Nakamura Y., Sanematsu K., Ohta R. et al. Diurnal variation of human sweet taste recognition thresholds is correlated with plasma leptin levels // Diabetes. 2008. V. 57. P. 2661–2665. https://doi.org/10.2337/db07-1103
- Nelson G., Hoon M.A., Chandrashekar J. et al. Mammalian sweet taste receptors // Cell. 2001. V. 106. P. 381–390. https://doi.org/10.1016/s0092-8674(01)00451-2
- Nie, Y., Vigues, S., Hobbs, J. R. et al. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli // Curr. Biol. 2005. V. 15. P. 1948–1952. https://doi.org/10.1016/j.cub.2005.09.037
- O’Brien P., Hewett R., Corpe C. Sugar sensor genes in the murine gastrointestinal tract display a cephalocaudal axis of expression and a diurnal rhythm // Physiol. Genomics. 2018. V. 50. P. 448–458. https://doi.org/10.1152/physiolgenomics.00139.2017
- O'Malley D., Reimann F., Simpson A.K., Gribble F.M. Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing // Diabetes. 2006. V. 55. № 12. P. 3381–3386. https://doi.org/10.2337/db06-0531
- Orci L., Unger R.H., Ravazzola M. et al. Reduced b-cell glucose transporter in new onset diabetic BB rats // J. Clin. Investig. 1990. V. 86. P. 1615–1622. https://doi.org/10.1172/JCI114883
- Oya M., Suzuki H., Watanabe Y. et al. Amino acid taste receptor regulates insulin secretion in pancreatic β-cell line MIN6 cells // Genes to Cells. 2011. V. 16(5). P. 608–616. https://doi.org/10.1126/scisignal.2003325
- Polakof S., Soengas J.L. Evidence of sugar sensitive genes in the gut of a carnivorous fish species // Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2013 V. 166(1). P. 58–64. https://doi.org/10.1016/j.cbpb.2013.07.003
- Raliou M., Wiencis A., Pillias A.M. et al. Nonsynonymous single nucleotide polymorphisms in human tas1r1 tas1r3 and mGluR1 and individual taste sensitivity to glutamate // Am. J. Clin. Nutr. 2009. V. 90. P. 789–799. https://doi.org/10.3945/ajcn.2009.27462P
- Ramos-Lopez O., Panduro A., Martinez-Lopez E. et al. Sweet taste receptor TAS1R2 polymorphism (Val191Val) is associated with a higher carbohydrate intake and hypertriglyceridemia among the population of West Mexico // Nutrients. 2016. V. 8(2). P 101. https://doi.org/10.3390/nu8020101
- Reed D.R., Bachmanov A.A., Tordoff M.G. Forty mouse strain survey of body composition // Physiol. Genomics. 2007. V. 91(5). P. 593–600. https://doi.org/10.1016/j.physbeh.2007.03.026
- Reed D.R., Li S., Li X. et al. Polymorphisms in the taste receptor gene (Tas1r3) region are associated with saccharin preference in 30 mouse strains // J. Neurosci. 2004. V. 24(4). P. 938–946. https://doi.org/10.1523/JNEUROSCI.1374-03.2004
- Rehfeld J.F. The origin and understanding of the incretin concept // Front. Endocrinol. 2018. V. 9. P. 387. https://doi.org/10.3389/fendo.2018.00387
- Reimann F., Habib A.M., Tolhurst G. et al. Glucose sensing in L cells: A primary cell study // C. Met. 2008. V. 8(6). P. 532–539. https://doi.org/10.1016/j.cmet.2008.11.002
- Ren X., Zhou L., Terwilliger R. et al. Sweet taste signaling functions as a hypothalamic glucose sensor // Front. Integr. Neurosci. 2009. V. 3. P. 12. https://doi.org/10.3389/neuro.07.012.2009
- Robino A., Bevilacqua L., Pirastu N. et al. Polymorphisms in sweet taste genes (TAS1R2 and GLUT2), sweet liking, and dental caries prevalence in an adult Italian population // Genes Nutr. 2015. V. 10. № . P. 485. https://doi.org/10.1007/s12263-015-0485-z
- Roper S.D. Signal transduction and information processing in mammalian taste buds // Pflügers Archiv. 2007. V. 454. P. 759–776. https://doi.org/10.1007/s00424-007-0247-x
- Rozengurt N., Wu S.V., Chen M.C. et al. Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon // Am. J. Physiol. Gastrointest. Liver Physiol. 2006. V. 291(5). P. 792–802. https://doi.org/10.1152/ajpgi.00074.2006
- Sabek O.M., Nishimoto S.K., Fraga D. et al. Osteocalcin effect on human β-Cells mass and function // Endocrinology. 2015. V. 156(9). P. 3137–3146. https://doi.org/10.1210/EN.2015-1143
- Sainz E., Cavenagh M.M., LopezJimenez N.D. et al. The G-protein coupling properties of the human sweet and amino acid taste receptors // Dev. Neurobiol. 2007. V. 67. P. 948–959. https://doi.org/10.1002/dneu.20403
- Schermerhorn T. Normal glucose metabolism in carnivores overlaps with diabetes pathology in non-carnivores // Front. Endocrinol. 2013. V. 4. P. 188. https://doi.org/10.3389/fendo.2013.00188
- Schuit F.C., Huypens P., Heimberg H. et al. Glucose sensing in pancreatic β-cells: A model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus // Diabetes. 2001. V. 50(1). P. 1–11. https://doi.org/10.2337/diabetes.50.1.1
- Sclafani A., Zukerman S., Ackroff K. Residual Glucose Taste in T1R3 Knockout but not TRPM5 Knockout Mice // Physiol. Behav. 2020. V. 222. P. 112945. https://doi.org/10.1016/j.physbeh.2020.112945
- Shahbandi A.A., Choo E., Dando R. Receptor regulation in taste: can diet influence how we perceive foods? // J. Multidiscip. Sci. J. 2018. V. 1. P. 106–115. https://doi.org/10.3390/j1010011
- Sigoillot M., Brockhoff A., Meyerhof W. et al. Sweet-taste-suppressing compounds: Current knowledge and perspectives of application // Applied MicroBiol. and Biotechnology. 2012. V. 96(3). P. 619–630. https://doi.org/10.1007/s00253-012-4387-3
- Simon B.R., Learman B.S., Parlee S.D. et al. Sweet taste receptor deficient mice have decreased adiposity and increased bone mass // PLoS ONE. 2014. V. 9(1). P. e86454. https://doi.org/10.1371/journal.pone.0086454
- Simon B.R., Parlee S.D., Learman B.S. et al. Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors // J. Biol. Chem. 2013. V. 288. P. 32475–32489. https://doi.org/10.1074/jbc.M113.514034
- Smith K.R., Hussain T., Karimian Azari E. et al. Disruption of the sugar-sensing receptor T1R2 attenuates metabolic derangements associated with diet-induced obesity // Am. J. Physiol. Endocrinol. Metab. 2016. V. 310(8). P. E688-E698. https://doi.org/10.1152/ajpendo.00484.2015
- Spielman A.I. Gustducin and its role in taste // J. Dent. Res. 1998. V. 77. P. 539–544. https://doi.org/10.1177/00220345980770040601
- Steensels S., Vancleef L., Depoortere I. The sweetener-sensing mechanisms of the ghrelin cell // Nutrients. 2016. V. 8(12). P. 795. https://doi.org/10.3390/nu8120795
- Steinert R.E., Gerspach A.C., Gutmann H. et al. The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) // Clin. Nutr. 2011. V. 30(4). P. 524–532. https://doi.org/10.1016/j.clnu.2011.01.007
- Sternini C., Anselmi L., Rozengurt E. Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing // Current Opinion in Endocrinology Diabetes & Obesity. 2008. V. 15. P. 73–78. https://doi.org/10.1097/MED.0b013e3282f43a73
- Straub S.G., Sharp G.W. Glucose-stimulated signaling pathways in biphasic insulin secretion // Diabetes/Metab. Research and Reviews. 2002. V. 18(6). P. 451–463. https://doi.org/10.1002/dmrr.329
- Sutherland K., Young R.L., Cooper N.J. et al. Phenotypic characterization of taste cells of the mouse small intestine // Am. J. Physiol. Gastrointestinal and Liver Physiology. 2007. V. 292(5). P. 1420–1428. https://doi.org/10.1152/ajpgi.00504.2006
- Szoke E., Shrayyef M.Z., Messing S. et al. Effect of aging on glucose homeostasis: accelerated deterioration of beta cell function in individuals with impaired glucose tolerance // Diabetes Care. 2008. V. 31(3). P. 539–543. https://doi.org/10.2337/dc07-1443
- Talavera K., Yasumatsu K., Voets T. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste // Nature. 2005. V. 15. P. 1022–1025. https://doi.org/10.1038/nature04248
- Thorens B. GLUT2 glucose sensing and glucose homeostasis // Diabetologia. 2015. V. 58. P. 221–232. https://doi.org/10.1007/s00125-014-3451-1
- Thorens B., Guillam M.T., Beermann F. et al. Transgenic reexpression of GLUT1 or GLUT2 in pancreatic beta cells rescues GLUT2-null mice from early death and restores normal glucose-stimulated insulin secretion // J. Biol. Chem. 2000. V. 275. P. 23751–23758. https://doi.org/10.1074/jbc.M002908200
- Thorens B., Weir G.C., Leahy J.L. et al. Reduced expression of the liver/beta-cell glucose transporter isoform in glucose-insensitive pancreatic beta cells of diabetic rats // Proc. Natl. Acad. Sci. USA. 1990. V. 87. P. 6492–6496. https://doi.org/10.1073/pnas.87.17.6492
- Thorens B., Wu Y., Leahy J.L. et al. The loss of GLUT2 expression by glucose-unresponsive beta cells of db/db mice is reversible and is induced by the diabetic environment // J. Clin. Investig. 1992. V. 90. P. 77–85. https://doi.org/10.1172/JCI115858
- Tobin V., Le G., M F. et al. Insulin internalizes GLUT2 in the enterocytes of healthy but not insulin-resistant mice // Diabetes. 2008. V. 57(3). P. 555–562. https://doi.org/10.2337/db07-0928
- Toda Y., Nakagita T., Hayakawa T. et al. Two distinct determinants of ligand specificity in T1R1/T1R3 (the umami taste receptor) // J. Biol. Chem. 2013. V. 288. Iss. 52. P. 36863–36877. https://doi.org/10.1074/jbc.M113.494443
- Treesukosol Y., Smith K.R., Spector A.C. The functional role of the T1R family of receptors in sweet taste and feeding // Physiol. Behav. 2011. V. 105(1). P. 14–26. https://doi.org/10.1016/j.physbeh.2011.02.030
- Tritschler S., Theis F.J., Lickert H. et al. Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas // Mol. Metab. 2017. V. 6(9). P. 974–990. https://doi.org/10.1016/j.molmet.2017.06.021
- Udagawa H., Hiramoto M., Kawaguchi M. et al. Characterization of the taste receptor-related G-protein α-gustducin in pancreatic β-cells // J. Diabetes Investig. 2020. V. 11(4). P. 814–822. https://doi.org/10.1111/jdi.13214
- von Molitor E., Riedel K., Krohn M. et al. An alternative pathway for sweet sensation: Possible mechanisms and physiological relevance // Pflugers Arch. 2020. V. 472(12). P. 1667–1691. https://doi.org/10.1007/s00424-020-02467-1
- von Molitor E., Riedel K., Krohn M. et al. Sweet taste is complex: signaling cascades and circuits involved in sweet sensation // Front. Hum. Neurosci. 2021. V. 15. P. 667709. https://doi.org/10.3389/fnhum.2021.667709
- Wang S.Y., Chi M., Li L. et al. Studies with GIP/Ins cells indicate secretion by gut K cells is KATP channel independent // Am. J. Physiol. Endocrinol. 2003. V. 284. P. 988–1000. https://doi.org/10.1152/ajpendo.00398.2002
- Wang Y., Liu J., Wu H. et al. Amino acids regulate mTOR pathway and milk protein synthesis in a mouse mammary epithelial cell line is partly mediated by T1R1/T1R3 // Eur. J. Nutr. 2017. V. 56(8). P. 2467–2474. https://doi.org/10.1007/s00394-016-1282-1
- Wauson E.M., Guerra M.L., Dyachok J. et al. Differential regulation of ERK1/2 and mTORC1 through T1R1/T1R3 in MIN6 Cells // Mol. Endocrinology. 2015. V. 29(8). P. 1114–1122. https://doi.org/10.1210/ME.2014-1181
- Wauson E.M., Zaganjor E., Lee A. et al. The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy // Mol. Cell. 2012. V. 47(6). P. 851–862. https://doi.org/10.1016/j.molcel.2012.08.001
- Weir G.C., Clore E.T., Zmachinski C.J. et al. Islet secretion in a new experimental model for non-insulin-dependent diabetes // Diabetes. 1981. V. 30(7). P. 590–595. https://doi.org/10.2337/diab.30.7.590
- Yan W., Sunavala G., Rosenzweig S. et al. Bitter taste transduced by PLC-beta(2)-dependent rise in IP(3) and alpha-gustducin-dependent fall in cyclic nucleotides // Am. J. Physiol. Cell. Physiol. 2001. V. 280. P. 742–751. https://doi.org/10.1152/ajpcell.2001.280.4.C742
- Yasumatsu K., Ohkuri T., Yoshida R. et al. Sodium-glucose cotransporter 1 as a sugar taste sensor in mouse tongue // Acta Physiol. 2020. V. 230(4). P. e13529. https://doi.org/10.1111/apha.13529
- Yee K.K., Sukumaran S.K., Kotha R. et al. Glucose transporters and ATP-gated K +(KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 5431–5436. https://doi.org/10.1073/pnas.1100495108
- Zhang Y., Hoon M.A., Chandrashekar J. et al. Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways // Cell. 2003. V. 112(3). P. 293–301. https://doi.org/10.1016/s0092-8674(03)00071-0
- Zhao G.Q., Zhang Y., Hoon M.A. et al. The receptors for mammalian sweet and umami taste // Cell. 2003. V. 115(3). P. 255–266. https://doi.org/10.1016/s0092-8674(03)00844-4
- Zhao H., Li J., Zhang J. Molecular evidence for the loss of three basic tastes in penguins // Current Biology 2015. V. 25.P. 141–142. https://doi.org/10.1016/j.cub.2015.01.026
- Zhao H., Yang J.R., Xu H. et al. Pseudogenization of the umami taste receptor gene Tas1r1 in the giant panda coincided with its dietary switch to bamboo // Mol. Biol. Evol. 2010. V. 27(12). P. 2669–2273. https://doi.org/10.1093/molbev/msq153
- Zhou Y., Ren J., Song T. et al. Methionine regulates mTORC1 via the T1R1/T1R3-PLC-Ca2+-ERK1/2 signal transduction process in C2C12 cells // International J. of Mol. Sciences. 2016. V. 17(10). P. 1684. https://doi.org/10.3390/ijms17101684
Supplementary files
