Ppropagation of a combustion wave at detonation transmission from a pipe into a free cylindrical gaseous charge

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The combustion in a free cylindrical gas charge caused by detonation transmission from the initiating tube was experimentally investigated. The dependences of the combustion velocity change along this charge for stoichiometric mixtures of ethane, ethylene and propane with oxygen were obtained. A pulsating combustion pattern along the charge was observed, as a consequence of the damped oscillatory process. The speed of this process varied from the detonation velocity at the section of the initiating tube to 200–350 m/s at the end of the gas charge.

Full Text

Restricted Access

About the authors

V. N. Mikhalkin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergei.khomik@gmail.com
Russian Federation, Moscow

S. V. Khomik

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: sergei.khomik@gmail.com
Russian Federation, Moscow

E. K. Anderzhanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergei.khomik@gmail.com
Russian Federation, Moscow

A. N. Ivantsov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergei.khomik@gmail.com
Russian Federation, Moscow

A. M. Tereza

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergei.khomik@gmail.com
Russian Federation, Moscow

I. V. Chebotarev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergei.khomik@gmail.com
Russian Federation, Moscow

A. A. Cherepanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergei.khomik@gmail.com
Russian Federation, Moscow

S. P. Medvedev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergei.khomik@gmail.com
Russian Federation, Moscow

References

  1. Krivosheyev P, Penyazkov O. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 388. https://doi.org/10.1134/S1990793123020094
  2. Kiverin A.D., Medvedkov I.S. & Yakovenko I.S. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1075. https://doi.org/10.1134/S1990793122060057
  3. Mikhalkin V.N., Sumskoi S.I., Tereza A.M. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 629. https://doi.org/10.1134/S1990793122040261
  4. Sumskoi S.I., Sof’in A.S., Zainetdinov S.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 1. P. 419. https://doi.org/10.1134/S199079312302015X
  5. Zeldovich Ya.B. // ZhETF. 1941. V. 11. № 1. P. 159.
  6. Medvedev S.P., Maximova O.G., Cherepanova T.T. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1112. https://doi.org/10.1134/S1990793122060082
  7. Borisov A.A., Mikhalkin V.N., Khomik S.V. // Dokl. Acad. Nauk SSSR. 1987. V. 296. № 1. P. 88.
  8. Vasil’ev A.A., Zak D.V. // Combust. Explos. Shock Waves. 1986. V. 22. P. 463. https://doi.org/10.1007/BF00862893
  9. Borisov A.A., Mikhalkin V.N., Khomik S.V. // Device for determining the critical diameter of gas detonation propagation in a free cylindrical explosive chargecharge. Сertificate of authorship. 1396765 SSSR.
  10. Bykova, N.G., Kusov, A.L., Kozlov, P.V. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 732. https://doi.org/10.1134/S1990793124700222
  11. Filimonova E.A., Dobrovolskaya A.S. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1285. https://doi.org/10.1134/S1990793123060167
  12. Borisov A.A., Mikhalkin V.N., Khomik S.V. // Soviet J. Chem. Phys. 1992. V. 8. № 6. P.1314.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Setup diagram.

Download (354KB)
3. Fig. 2. Photoregistration pattern of the transition of the detonation wave that left the initiating tube into a free charge with a diameter of 70 mm, formed from a mixture of C3H8 + 5O2: 1 - detonation front in the booster tube, 2 - pulsating front of turbulent combustion.

Download (418KB)
4. Fig. 3. Photoregistration pattern of the decay of the detonation wave that left the initiating tube into a free charge with a diameter of 60 mm, formed from a mixture of C3H8 + 5O2: 1 - detonation front in the booster tube, 2 - pulsating front of turbulent combustion.

Download (442KB)
5. Fig. 4. Change in the velocity of the explosive process in the mixture of C3H8 + 5O2 in the initiating tube and a free charge with a diameter of 60 (1), 40 (2), 70 (3) and 82 mm (4).

Download (514KB)
6. Fig. 5. Change in the velocity of the explosive process in a mixture of C2H4 + 3O2 and a free cylindrical charge with a diameter of 40 mm (1), in a mixture of C2H6 + 3.5O2 and a charge with a diameter of 60 mm (2), and also in a mixture of C3H8 + 5O2 and a charge with a diameter of 40 mm (3) in an initiating tube.

Download (489KB)
7. Fig. 6. Change in the velocity of the explosive process in a mixture of C2H4 + 3O2 for different values of the diameter of the free charge: 1 - 94 mm, 2 - 114 mm and 3 - 155 mm. Dashed line - the speed of sound a0 in the initial mixture.

Download (538KB)

Copyright (c) 2025 Russian Academy of Sciences