Kinetics of the reaction of hydrogen evolution on steel in a hydrochloric acid solution containing corrosion inhibitors

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The kinetics of cathodic reduction of hydrogen on low-carbon steel in 2 M HCl (t = 25 °C) containing corrosion inhibitors – catamine AB and IFKhAN-92 – was studied. The main rate constants for the stages of hydrogen gas evolution and the introduction of hydrogen atoms into steel are determined. The additions of catamine AB and IFKhAN-92 inhibited the cathodic reduction of hydrogen and its permeation into steel in an HCl solution. The most effective inhibitor of hydrogen absorption is IFKhAN-92. The inhibitory effect of this compound is due to a decrease in the ratio of the hydrogen concentration in the metal phase to the degree of hydrogen filling of the surface. IFKhAN-92 reduction of hydrogen concentration in the volume of metal determines the preservation of the plastic properties of steels during corrosion in HCl solutions. The high efficiency of IFKhAN-92, as an inhibitor of cathodic reduction of hydrogen and its absorption, is the result of chemisorption of this compound on the surface of the steel and the formation of a polymolecular protective layer.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Ya. Avdeev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: avdeevavdeev@mail.ru
Ресей, Moscow

T. Nenasheva

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
Ресей, Moscow

A. Luchkin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
Ресей, Moscow

A. Panova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
Ресей, Moscow

A. Marshakov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
Ресей, Moscow

Yu. Kuznetsov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Ya.G. Avdeev, T.A. Nenasheva, A.Yu. Luchkin et al. Russ. J. Phys. Chem. B, 18, 111 (2024). https://doi.org/10.1134/S1990793124010044
  2. E.I. Rudenko, N.V. Dohlikova, A.K. Gatin et al. Russ. J. Phys. Chem. B, 17(4), 845 (2023). https://doi.org/10.1134/S1990793123040164
  3. N.V. Dokhlikova, S.A. Ozerin, S.V. Doronin et al. Russ. J. Phys. Chem. B, 16(3), 461 (2022). https://doi.org/10.1134/S1990793122030137
  4. N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy et al. Russ. J. Phys. Chem. B, 15(4), 732 (2021). https://doi.org/10.1134/S1990793121040023
  5. N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy et al. Russ. J. Phys. Chem. B, 16(2), 361 (2022). https://doi.org/10.1134/S1990793122020166
  6. N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadii et al. Russ. J. Phys. Chem. B, 14(5), 733 (2020). https://doi.org/10.1134/S1990793120050036 .
  7. S. Muralidharan, M.A. Quraishi and S.V.K. Iyer. Corros. Sci., 37, 1739 (1995). https://doi.org/10.1016/0010-938X(95)00068-U
  8. A.I. Marshakov, T.A. Nenasheva, A.A. Rybkina et al. Prot. Met., 43, 77 (2007). https://doi.org/10.1134/S0033173207010110
  9. S. Hari Kumar, P.A. Vivekanand, P. Kamaraj. Mat. Today: Proceed., 36, 898 (2021). https://doi.org/10.1016/j.matpr.2020.07.027
  10. M.A.V. Devanathan, Z. Stachurski. Proceeding of the royals Society. Ser. A. Mathematical and Physical Science, 270А, 90 (1962). https://doi.org/10.1098/rspa.1962.0205
  11. M.A.V. Devanathan, Z. Stachurski. J. Electrochem. Soc., 3, 619 (1964). https://doi.org/10.1149/1.2426195
  12. R.N. Iyer, H.W. Pickering, M. Zamanzadeh. J. Electrochem. Soc., 136, 2463 (1989). https://doi.org/10.1149/1.2097429
  13. B.N. Popov, J.-W. Lee, M.B. Djukic. Handbook of Environmental Degradation of Materials (Third Edition), Elsevier Inc., 133 (2018). https://doi.org/10.1016/B978-0-323-52472-8.00007-1
  14. C.D. Wagner, L.E. Davis, M.V. Zeller et al. Surf. Inter. Analysis., 3, 211 (1981). https://doi.org/10.1002/sia.740030506
  15. D.A. Shirley. Phys. Rev. B, 5, 4709 (1972). https://doi.org/10.1103/PhysRevB.5.4709
  16. T.J. Harvey, F.C. Walsh, A.H. Nahlé, J. Mol. Liq., 266, 160 (2018). https://doi.org/10.1016/j.molliq.2018.06.014

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Cathodic polarization curves on steel (a) and potential dependence of hydrogen introduction rate (b) in 2 m hcl solution containing 5 mm ir.

Жүктеу (49KB)
3. Fig. 2. Polarization curves on high-strength steel in 2 M HCl solution (1) with 5 mM AB catamine (2) and IFCHAN-92 (3) additives.

Жүктеу (31KB)
4. Fig. 3. Equivalent electrical diagram and Nyquist diagrams of steel electrode in 2 M HCl solution (1), taken after introduction of 0.01 mM IFCHAN-92 into the solution with exposure time (min): 2 - 5, 3 - 15, 4 - 60, 5 - 120, 6 - 180.

Жүктеу (66KB)
5. Fig. 4. Adsorption isotherm of IFCHAN-92 on steel (E = -0.30 B) in 2 M HCl solution.

Жүктеу (23KB)
6. Fig. 5. Standard RFE electron spectrum of Fe(2p) surface of steel (spin orbital splitting - duplet), after pre-adsorption of the inhibitor with 2 M HCl + 5 mM IFCHAN-92 for 24 h.

Жүктеу (56KB)
7. Fig. 6. XRD electron O(1s) spectra of the steel surface after pre-adsorption of the inhibitor 2 M HCl + + + 5 mM IFCHAN-92 for 24 h.

Жүктеу (64KB)
8. Fig. 7. RFE spectra of N(1s) electrons of steel surface after preliminary adsorption of inhibitor 2 M HCl + 5 mM IFCHAN-92 for 24 h followed by washing in an ultrasonic bath.

Жүктеу (43KB)

© Russian Academy of Sciences, 2025