Peculiarities of the effect of manganese and cadmium ions on the properties of liposomes from lecithin

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The features of the influence of divalent cadmium and manganese ions on the ability of lecithin to form aggregates in water medium, its ζ-potential, and the state of the lipid peroxidation processes have been studied. The methods used were TLC, dynamic light scattering, and processing of UV spectra using the Gauss method. It was revealed that cadmium ions accelerate the processes of lipid oxidation in liposomes, and manganese ions inhibit them. At the same time, cadmium ions, as opposed to manganese ions, require more period to interact with the membrane structure of liposomes. The data obtained and the analysis of the literature allow us to conclude that the cadmium and manganese ions present in the solution influence the spontaneous aggregation of lecithin and participate at different stages of the oxidation process in accordance with their biological activity when entering the body.

全文:

受限制的访问

作者简介

P. Beletskaya

Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences

Email: shishkina@sky.chph.ras.ru
俄罗斯联邦, Moscow

A. Dubovik

Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences; Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences

Email: shishkina@sky.chph.ras.ru
俄罗斯联邦, Moscow; Moscow

V. Shvydkiy

Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences

Email: shishkina@sky.chph.ras.ru
俄罗斯联邦, Moscow

L. Shishkina

Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: shishkina@sky.chph.ras.ru
俄罗斯联邦, Moscow

参考

  1. E.V. Shtamm, V.O. Shvydkii, I.S. Baikova. Russ. J. Phys. Chem. B 9, 421 (2015). https://doi.org/10.1134/S1990793115030197
  2. Q. Wang, Z. Yang. Environ. Pollution. 218, 358 (2016). https://doi.org/ 10.1016/j.envpol.2016.07.011
  3. Anil K. Dwivedi. Intern. Reas. J. Natur. Appl. Sci. 4, 118 (2017).
  4. L. Schweitzer. J. Noblet, Green Chem. 1, 261 (2018). https://doi.org/10.1016/B978-0-12-809270-5.00011-X
  5. Y.I. Skurlatov, E.V. Shtamm, A.V. Roshchin. Russ. J. Phys. Chem. B 14, 130 (2020). https://doi.org/ 10.1134/S1990793120010303
  6. V.F. Gromov, M.I. Ikim, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B 16, 138 (2022). https://doi.org/10.1134/S1990793122010055
  7. I.V. Kumpanenko, K.A. Shiyanova, E.O. Panin, O.V. Shapovalova. Russ. J. Phys. Chem. B 16, 1164 (2022). https://doi.org/10.1134/s1990793122060185
  8. D. Kar, P. Sur, S.K. Mandai et al. Intern. J. of Environ. Sci. Techol. 5, 119 (2008).
  9. I.F. Medvedev, S.S. Derevaygin. Heavy metals in ecosystems (Racurs, Saratov, 2017).
  10. C. Zamora-Ledezma, D. Negrete-Bolagay, F. Figueroa et al. Environ. Techol. Innov. 22, 26 (2021). https://doi.org/10.1016/j.eti.2021.101504
  11. V.F. Gromov, M.I. Ikim, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B. 15, 140 (2021). https://doi.org/10.1134/S1990793121010036
  12. I.V. Kumpanenko, N.A. Ivanova, O.V. Shapovalova et al. Russ. J. Phys. Chem. B. 16, 917 (2022). https://doi.org/10.1134/s1990793122050050
  13. H.B. Bradl. Interface Sci. Techol. 6, 1 (2005). https://doi.org/10.1016/s1573-4285(05)80020-1
  14. L. Sörme, R. Lagerkvist. Sci. Total Environ. 298, 131 (2002). https://doi.org/10.1016/s0048-9697(02)00197-3
  15. P. Chen, J. Bornhorst, M. Aschner. Front. Biosci. 23, 1655 (2018). https://doi.org/10.2741/4665
  16. B.S. Musayev, A.I. Rabadanova, G.R. Muradova, A.Z. Marhiyeva. Toxic. Review. 113, 27 (2012).
  17. S.L. O’Neal, W. Zheng. Curr. Environ. Health Rpt. 2, 315 (2015). https://doi.org/10.1007/s40572-015-0056-x
  18. D.L. Mazunina. Human Ecology. 3, 25 (2015).
  19. N. Johri, G. Jacquillet, R. Unwin. Biometals. 23, 783 (2010). https://doi.org/10.1007/s10534-010-9328-y
  20. S.G. Skugoreva, T.Ya. Ashihmina, A.I. Fokina, E.I. Lyalina. Theor. Appl. Ecology. 1, 4 (2016). https://doi.org/10.25750/1995-4301-2016-1-014-019
  21. C. Vigo-Pelfrey. Membrane Lipid Oxidation (CRC Press, Boston, 1991)
  22. L.N. Shishkina, M.A. Klimovich, M.V. Kozlov. Pharmaceutical and Medical Biotechnology: New Perspective. (Nova Science Publishers, N.Y., 2013).
  23. V.O. Shvydkii, E.V. Shtamm, Y.I. Skurlatov et al. Russ. J. Phys. Chem. B 11, 643 (2017). https://doi.org/10.1134/S1990793117040248
  24. L.N. Shishkina, M.V. Kozlov, A.Y. Povkh, V.O. Shvydkiy. Russ. J. Phys. Chem. B 15, 861 (2021). https://doi.org/10.1134/S1990793121050080
  25. Biological Membranes: A Practical Approach, Ed. by J.B.C. Findlay. W.H. Evans (Oxford Univ. Press, Oxford, 1987; Mir, Moscow, 1990).
  26. L.N. Shishkina, E.V. Kushnireva, M.A. Smotryaeva. Radiation biology. Radioecology. 44, 289 (2004). https://doi.org/10.31857/S0869803123020108
  27. K.M. Marakulina, R.V. Kramor, Yu.K. Lukanina et al. Russ. J. Phys. Chem. A 90, 289 (2016). https://doi.org/10.1134/S0036024416022187
  28. L.N. Shishkina, M.V. Kozlov, T.V. Konstantinova et al. Russ. J. Phys. Chem. B 17, 141 (2023). https://doi.org/10.1134/s1990793123010104
  29. L.N. Shishkina, P.D. Beletskaya, A.S. Dubovik et al. Russ. J. Biol. Phys. Chem. 8 (1), 111 (2023). https://doi.org/10.29039/rusjbbpc.2023.0597
  30. M. Valko, D. Leibfritz, J. Moncol et al. Intern. J. Biochem. Cell Biol. 39, 44 (2007). https://doi.org/10.1016/j.biocel.2006.07.001
  31. V. Shvydkyi, S. Dolgov, A. Dubovik et al. J. Chem. Moldova. 17, 35 (2022). https://doi.org/10.19261/cjm.2022.973

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Distribution of the light scattering intensity of the size (d) of lecithin aggregates in distilled water (1) and in the presence of cadmium (2) and manganese (3) ions. [Lecithin] = 4.3 10–5 M, [M+] = 10–4 M.

下载 (75KB)
3. Fig. 2. Change in size (d) of the main fraction of lecithin particles depending on the concentration of cadmium ions in the solution at a solution exposure time of 0.5 (1) and 2.5 h (2). The dashed lines indicate the accuracy range for determining the diameter of lecithin liposomes.

下载 (68KB)
4. Fig. 3. Effect of cadmium ion concentration (exposure time – 2.3 h) and manganese (exposure time – 0.5 h) on the diameter of the main fraction of lecithin liposomes in distilled water. The dashed lines indicate the accuracy range of determining the diameter of lecithin liposomes.

下载 (67KB)
5. Fig. 4. Typical UV spectrum of lecithin in the presence of manganese ions in solution ([Mn2+] = 10–4 M) and its Gaussians: 1 and 6 – initial and calculated spectra, 2 – 197.5 nm, 3 – 231 nm, 4 – 257 nm, 5 – 330 nm.

下载 (68KB)
6. Fig. 5. Typical UV spectrum of lecithin in the presence of cadmium ions in solution ([Cd2+] = 10–4 M) and its Gaussians: 1 and 7 – initial and calculated spectra, 2 – 197.5 nm, 3 – 229.5 nm, 4 – 273 nm, 5 – 335 nm, 6 – 395 nm.

下载 (77KB)
7. Fig. 6. Changes in the ratio of ketodienes and diene conjugates [KD]/[DK] in liposome lipids depending on the concentration of manganese and cadmium ions in the solution.

下载 (62KB)

版权所有 © Russian Academy of Sciences, 2025