Effect of the formation method of ZnO–In2O3 composites on their structural characteristics and conductivity

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Composites based on indium oxide containing different amounts of zinc oxide were synthesized by hydrothermal and impregnation methods. The phase composition, structure, and specific surface of the obtained composites were studied by various physicochemical methods. The electrophysical properties of composites synthesized by different methods are compared. It is shown that the method of formation has a significant effect on the structural characteristics of the composites, which in turn leads to the implementation of various conduction mechanisms.

Texto integral

Acesso é fechado

Sobre autores

M. Ikim

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ikimmary1104@gmail.com
Rússia, Moscow

E. Spiridonova

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Rússia, Moscow

V. Gromov

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Rússia, Moscow

G. Gerasimov

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Rússia, Moscow

L. Trakhtenberg

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University

Email: ikimmary1104@gmail.com
Rússia, Moscow; Moscow

Bibliografia

  1. N. Barsan, D. Koziej, U. Weimar, Sens. Actuators B. 121, 18 (2007).
  2. J.M. Walker, S.A. Akbar, P.A. Morris, Sens. Actuators B. 286, 624 (2019).
  3. P.T. Moseley, Meas. Sci. Technol. 28, 082001 (2017).
  4. K.S. Kurmangaleev, M.A. Kozhushner, L.I. Trakhtenberg, Russ. J. Phys. Chem. B 14, 1063 (2020).
  5. L. Wang, L. Yin, D. Zhang, R.G. Xiang, Sensors. 10, 2088 (2010).
  6. G. N. Gerasimov, V. F. Gromov, M. I. Ikim, L. I. Trakhtenberg, Russ. J. Phys. Chem. B 15, 1072 (2021).
  7. G. Korotcenkov, B.K. Cho, Progress in Crystal Growth and Characterization of Materials. 58, 167 (2012).
  8. L.I. Trakhtenberg, G.N. Gerasimov, V.F. Gromov, T.V. Belysheva, O.J. Ilegbusi, Sens. Actuators B. 187, 514 (2013).
  9. T.V. Belysheva, E.Y. Spiridonova, M.I. Ikim et al., Russ. J. Phys. Chem. B 14, 298 (2020).
  10. M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg, Russ. J. Phys. Chem. B 16, 1 (2022).
  11. V. F. Gromov, M. I. Ikim, G. N. Gerasimov, L. I. Trakhtenberg, Russ. J. Phys. Chem. B 15, 1084 (2021).
  12. A.L. Efros, The Physics and the Geometry of Disorder (Nauka, Moscow, 1982) [in Russian].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Survey X-ray spectra of ZnO–In2O3 composites of various compositions obtained by the hydrothermal method.

Baixar (340KB)
3. Fig. 2. SEM image of a hydrothermal composite 5%ZnO–95%In2O3.

Baixar (482KB)
4. Fig. 3. TEM image of a 10%ZnO–90%In2O3 composite obtained by impregnation.

Baixar (609KB)
5. Fig. 4. Adsorption (filled symbols) and desorption (empty symbols) isotherms of N2 at a temperature of 77 K: 1 – impregnated sample of 5%ZnO–95% In2O3, 2 – hydrothermal sample of 5%ZnO–95%In2O3.

Baixar (121KB)
6. Fig. 5. Concentration dependence of the resistance in air of ZnO–In2O3 nanocomposite films: 1 – hydrothermal method, 2 – impregnation method (T = 330 °C).

Baixar (139KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024