Synthesis and Luminescent Properties of the Carbonyl-Isonitrile Re(I) Complex Based on Menthol-Modified Phenanthroline

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A carbonyl-isonitrile complex of [Re(CO)₃(L)(m-XylylNC)]OTf formulation (m-XylylNC – 2,6-dimethyl-phenyl isocyanide) was synthesized based on the 1,10-phenanthroline ligand (L) containing a menthol fragment (MtO) in position 2. The Re(I) atom in the cationic part of this complex has a distorted octahedral environment formed by the N,N′-chelate ligand L, one isonitrile ligand, and three CO ligands. The resulting compound exhibits bright green phosphorescence at room temperature in both the solid state and solution, with quantum yields of 15% and 10%, respectively.

Full Text

Restricted Access

About the authors

M. P. Davydova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: chemisufarm@yandex.ru
Russian Federation, Novosibirsk

A. M. Agafontsev

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: chemisufarm@yandex.ru
Russian Federation, Novosibirsk

V. N. Yudin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: chemisufarm@yandex.ru
Russian Federation, Novosibirsk

M. I. Rakhmanova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: chemisufarm@yandex.ru
Russian Federation, Novosibirsk

A. V. Artem’ev

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: chemisufarm@yandex.ru
Russian Federation, Novosibirsk

References

  1. Kirgan R.A., Sullivan B.P., Rillema D.P. // Photochemistry and photophysics of coordination compounds II / Eds. Balzani V., Campagna S. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. P. 45.
  2. Abramov P.A., Dmitriev A.A., Kholin K.V. et al. // Electrochim. Acta. 2018, V. 270. P. 526. https://doi.org/10.1016/j.electacta.2018.03.111
  3. Abramov P.A., Brylev K.A., Vorob’ev A.Y. et al. // Polyhedron. 2017. V. 137. P. 231. https://doi.org/10.1016/j.poly.2017.08.046
  4. Абрамов П.А. // Журн. структур. химии. 2021 V. 62. P. 1513. https://doi.org/10.26902/JSC_id79933 (Abramov P.A. // J. Struct. Chem. 2021. V. 62. P. 1416. https://doi.org/10.1134/S0022476621090109).
  5. Abramov P.A., Gritsan N.P., Suturina E. A. et al. // Inorg. Chem. 2015. V. 54. P. 6727. https://doi.org/10.1021/acs.inorgchem.5b00407
  6. Nayeri S., Jamali S., Pavlovskiy V.V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 4350. https://doi.org/10.1002/ejic.201900617
  7. Shakirova J.R., Nayeri S., Jamali S. et al. // ChemPlusChem. 2020. V. 85. P. 2518. https://doi.org/10.1002/cplu.202000597
  8. Kisel K.S., Baigildin V.A., Solomatina A.I. et al. // Molecules. 2023. V. 28. P. 348. https://doi.org/10.3390/molecules28010348
  9. Kisel K.S., Shakirova J.R., Pavlovskiy V.V. et al. // Inorg. Chem. 2023. V. 62. P. 18625. https://doi.org/10.1021/acs.inorgchem.3c02915
  10. Kisel K.S., Eskelinen T., Zafar W. et al. // Inorg. Chem. 2018. V. 57. P. 6349. https://doi.org/10.1021/acs.inorgchem.8b00422
  11. Kalyanasundaram K. // Faraday Trans. 2. 1986. V. 82. P. 2401. https://doi.org/10.1039/F29868202401
  12. Yu T., Tsang D.P.-K., Au V. K.-M. et al. // Chem. Eur. J. 2013. V. 19. P. 13418. https://doi.org/10.1002/chem.201301841
  13. Sacksteder L., Lee M., Demas J. et al. // J. Am. Chem. Soc. 1993. V. 115. P. 8230. https://doi.org/10.1021/ja00071a036
  14. Villegas J.M., Stoyanov S.R., Huang W. et al. // Inorg. Chem. 2005 V. 44. P. 2297. https://doi.org/10.1021/ic048786f
  15. Favale J.M., Jr., Danilov E.O., Yarnell J E. et al. // Inorg. Chem. 2019 V. 58. P. 8750. https://doi.org/10.1021/acs.inorgchem.9b01155
  16. Klemens T., Świtlicka A., Szlapa-Kula A. et al. // Organometallics. 2019. V. 38. P. 4206. https://doi.org/10.1021/acs.organomet.9b00517
  17. Taydakov I.V., Vashchenko A.A., Lyssenko K.A. et al. // ARKIVOC. 2017. V. 2017, P. 205. https://doi.org/10.24820/ark.5550190.p010.130
  18. Hostachy S., Policar C., Delsuc N. // Coord. Chem. Rev. 2017. V. 351. P. 172. https://doi.org/10.1016/j.ccr.2017.05.004
  19. Chelushkin P.S., Shakirova J.R., Kritchenkov I.S. et al. // Dalton Trans. 2022 V. 51. P. 1257. https://doi.org/10.1039/D1DT03077A
  20. Leonidova A., Gasser G. // ACS Chem. Biol. 2014. V.9. P. 2180. https://doi.org/10.1021/cb500528c
  21. Lee L.C.-C., Leung K.-K., Lo K.K.-W. // Dalton Trans. 2017. V. 46. P. 16357. https://doi.org/10.1039/C7DT03465B
  22. Kuninobu Y., Takai K. // Chem. Rev. 2011. V. 111. P. 1938. https://doi.org/10.1021/cr100241u
  23. Kisel K.S., Samandarsangari M., Sokolov V.V. et al. // Opt. Mater. 2025. V. 159. P. 116589. https://doi.org/10.1016/j.optmat.2024.116589
  24. Saleh N., Srebro M., Reynaldo T. et al. // Chem. Commun. 2015. V. 51. P. 3754. https://doi.org/10.1039/C5CC00453E
  25. Gauthier E.S., Abella L., Hellou N. et al. // Angew. Chem. Int. Ed. 2020. V. 59 P. 8394. https://doi.org/10.1002/anie.202002387
  26. Saleh N., Kundu D., Vanthuyne N. et al. // ChemPlusChem. 2020, Vol. 85, P. 2446. https://doi.org/10.1002/cplu.202000559
  27. Gauthier E.S., Abella L., Caytan E. et al. // Chem. Eur. J. 2023, Vol. 29, P. e202203477. https://doi.org/10.1002/chem.202203477
  28. Giuso V., Gourlaouen C., Delporte-Pébay M. et al. // Phys. Chem. Chem. Phys. 2024. V. 26. P. 4855. https://doi.org/10.1039/D3CP04300B
  29. Kundu D., Jelonek D., Del Rio N. et al. // Chem. Asian J. год ? V. n/a. Аrt. e202401735. https://doi.org/10.1002/asia.202401735
  30. Davydova M.P., Xu T., Agafontsev A.M. et al. // Angew. Chem. Int. Ed. 2025. V. 64. Аrt. e202419788. https://doi.org/10.1002/anie.202419788
  31. Bruker Apex3 Software Suite: Apex3, SADABS‐2016/2 and SAINT 8.40a. 2017. V. ? Bruker AXS Inc., Madison, WI, USA.
  32. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  33. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  34. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42, P. 339. https://doi.org/10.1107/S0021889808042726
  35. van der Sluis P., Spek A.L. // Acta Crystallogr. A. 1990. V. 46. P. 194. https://doi.org/10.1107/S0108767389011189
  36. Ortega J.V., Khin K., van der Veer W.E. et al. // Inorg. Chem. 2000. V. 39. P. 3038. https://doi.org/10.1021/ic0006910
  37. Aechter B., Knizek J., Nöth H. et al. // Z. Kristallogr. NCS. 2005. V. 220. P. 107. https://doi.org/10.1524/ncrs.2005.220.14.107
  38. King A.P., Marker S.C., Swanda R.V. et al. // Chem. Eur. J. 2019. V. 25. P. 9206. https://doi.org/10.1002/chem.201902223
  39. Ko C.-C., Ng C.-O., Yiu S.-M. // Organometallics. 2012. V. 31. P. 7074. https://doi.org/10.1021/om300526e
  40. Marker S.C., King A.P., Granja S. et al. // Inorg. Chem. 2020. V. 59. P. 10285. https://doi.org/10.1021/acs.inorgchem.0c01442
  41. Тюпина М.Ю., Мирославов А.Е., Сидоренко Г.В. и др. // Журн. общ. химии. 2022. V. 92. P. 110. https://doi.org/10.31857/S0044460X22010127 (Tyupina M.Y., Miroslavov A.E., Sidorenko G.V. et al. // Russ. J. Gen. Chem. 2022, V. 92. P. 69. https://doi.org/10.1134/S1070363222010108).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Additional materials
Download (293KB)
3. Scheme 1. Synthesis of complex I.

Download (165KB)
4. Fig. 1. Structure of complex I. The disordered part of the menthol fragment and solvate molecules are not shown.

Download (223KB)
5. Fig. 2. Channels in the structure of complex I along the direction [0 1 −1].

Download (942KB)
6. Fig. 3. Powder and solution of complex I in daylight and UV light (365 nm) (a); normalized excitation (λem = 510 nm) and PL (λexc = 340 nm) spectra for a solid sample of I (b); normalized absorption, excitation (λem = 525 nm), and PL (λexc = 405 nm) spectra for a solution of I (MeCN, 10⁻⁵ mol/L) (c).

Download (356KB)

Copyright (c) 2025 Российская академия наук