Adaptation of a protocol for the automated solid-phase phosphoramidite synthesis of oligodeoxyribonucleotides for the preparation of their N-unsubstituted phosphoramidate analogues (P-NH2)
- Authors: Malova E.A.1, Pyshnaya I.A.1, Meschaninova M.I.1, Pyshnyi D.V.1
-
Affiliations:
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 50, No 6 (2024)
- Pages: 789-805
- Section: Articles
- URL: https://ter-arkhiv.ru/0132-3423/article/view/670754
- DOI: https://doi.org/10.31857/S0132342324060065
- EDN: https://elibrary.ru/NFNVKA
- ID: 670754
Cite item
Abstract
A new approach to the automated synthesis of N-unsubstituted phosphoramidate oligodeoxyribonucleotides (P-NH2) based on an optimized solid-phase phosphoramidite protocol using the Staudinger reaction has been proposed. The rapid and efficient oxidation of model P(III)-containing phosphite triethers by the organic azide (9H-fluoren-9-yl)methylcarbonylazide (FmocN3) to the corresponding phosphamides –(OPO(OR)(NFmoc))–, where R is a residue of nucleoside or alkyl nature, has been demonstrated. Removal of the alkaline-labile fluorenyl group from the modified internucleoside linkage allows the production of electroneutral, under physiological conditions of pH ~7, N-unsubstituted phosphoramidate (–(OPO(O)(NH2))– or (P-NH2)) residues in the oligonucleotide chain instead of the classical negatively charged phosphodiester (–(OPO(O)(O)(O¯))–) or (P-O)) residues. In optimizing the synthetic protocol, it has been demonstrated that to improve the efficiency of P-NH2-oligonucleotide synthesis, it is necessary to include an additional Fmoc-group cleavage step in the automatic synthesis protocol after each oxidation step of the growing oligomer chain via the Staudinger reaction. An almost complete absence of dependence of the P-NH2-oligonucleotide yield on both the localization of the P-NH2-strand in the chain and the type of dinucleotide fragment being modified was shown. A set of mono- and bis-modified octadeoxyribonucleotides was obtained, and a detailed study of the thermal stability of complementary DNA/DNA complexes under different buffer conditions was performed. It was shown that under high ionic strength conditions (1 M NaCl, pH 7.2), the introduction of a single P-NH2 strand reduced the thermostability of the DNA complex by an average of 1.3°C. When the ionic strength of the solution decreases, the destabilizing effect of the P-NH2-modification decreases significantly, which further confirms the electroneutral status of the introduced phosphoramidate linkage. Thus, we have developed a protocol for the preparation of partially modified oligonucleotide derivatives bearing uncharged but isostructured to native P-O-strands – phosphoramidate residues P-NH2.
Full Text

About the authors
E. A. Malova
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: malova.ev.an@gmail.com
Russian Federation, prosp. Acad. Lavrentyeva 8, Novosibirsk, 630090
I. A. Pyshnaya
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Email: pyshnaya@niboch.nsc.ru
Russian Federation, prosp. Acad. Lavrentyeva 8, Novosibirsk, 630090
M. I. Meschaninova
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Email: pyshnaya@niboch.nsc.ru
Russian Federation, prosp. Acad. Lavrentyeva 8, Novosibirsk, 630090
D. V. Pyshnyi
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Email: pyshnaya@niboch.nsc.ru
Russian Federation, prosp. Acad. Lavrentyeva 8, Novosibirsk, 630090
References
- Knouse K., Flood D., Vantourout J., Schmidt M., McDonald I., Eastgate M., Baran P. // ACS Cent. Sci. 2021. V. 7. P. 1473–1485. https://doi.org/10.1021/acscentsci.1c00487
- Benner S., Hurter D. // Bioorg. Chem. 2002. V. 30. P. 62–80. https://doi.org/10.1006/bioo.2001.1232
- Agrawal S. // Trends Biotechnol. 1996. V. 14. P. 376–387. https://doi.org/10.1016/0167-7799(96)10053-6
- Duffy K., Arangundy-Franklin S., Holliger P. // BMC Biol. 2020. V. 18. P. 112. https://doi.org/10.1186/s12915-020-00803-6
- Oberemok V., Laikova K., Repetskaya A., Kenyo I., Gorlov M., Kasich I., Krasnodubets A., Gal’chinsky N., Fomochkina I., Zaitsev A., Bekirova V., Seidosmanova E., Dydik K., Meshcheryakova A., Nazarov S., Smagliy N., Chelengerova E., Kulanova A., Deri K., Subbotkin M., Useinov R., Shumskykh M., Kubyshkin A. // Molecules. 2018. V. 23. P. 1302. https://doi.org/10.3390/molecules23061302
- Clavé G., Reverte M., Vasseur J.-J., Smietana M. // RSC Chem. Biol. 2021. V. 2. P. 94–150. https://doi.org/10.1039/D0CB00136H
- Kandasamy P., Liu Y., Aduda V., Akare S., Alam R., Andreucci A., Boulay D., Bowman K., Byrne M., Cannon M., Chivatakarn O., Shelke J.D., Iwamoto N., Kawamoto T., Kumarasamy J., Lamore S., Lemaitre M., Lin X., Longo K., Looby R., Marappan S., Metterville J., Mohapatra S., Newman B., Paik I.H., Patil S., Purcell-Estabrook E., Shimizu M., Shum P., Standley S., Taborn K., Tripathi S., Yang H., Yin Y., Zhao X., Dale E., Vargeese C. // Nucleic Acids Res. 2022. V. 50. P. 5401–5423. https://doi.org/10.1093/nar/gkac037
- Egli M., Manoharan M. // Nucleic Acids Res. 2023. V. 51. P. 2529–2573. https://doi.org/10.1093/nar/gkad067
- de la Torre B., Albericio F. // Molecules. 2023. V. 28. P. 1038. https://doi.org/10.3390/molecules28031038
- Nielsen P. // Mol. Biotechnol. 2004. V. 26. P. 233–248. https://doi.org/10.1385/MB:26:3:233
- Nielsen P. // Chem. Biodivers. 2010. V. 7. P. 786–804. https://doi.org/10.1002/cbdv.201000005
- Arangundy-Franklin S., Taylor A., Porebski B., Genna V., Peak-Chew S., Vaisman A., Woodgate R., Orozco M., Holliger P. // Nat. Chem. 2019. V. 11. 533– 542. https://doi.org/10.1038/s41557-019-0255-4
- Peyrottes S. // Nucleic Acids Res. 1996. V. 24. P. 1841– 1848. https://doi.org/10.1093/nar/24.10.1841
- Chubarov A.S., Oscorbin I.P., Novikova L.M., Filipenko M.L., Lomzov A.A., Pyshnyi D.V. // Diagnostics. 2023. V. 13. P. 250. https://doi.org/10.3390/diagnostics13020250
- Dong Z., Chen X., Zhuo R., Li Y., Zhou Z., Sun Y., Liu Y., Liu M. // BMC Biol. 2023. V. 21. P. 95. https://doi.org/10.1186/s12915-023-01599-x
- Sarkar S. // Biopolymers. 2023. V. 115. P. e23567. https://doi.org/10.1002/bip.23567
- Lomzov A.A., Kupryushkin M.S., Dyudeeva E.S., Pyshnyi D.V. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 461–468. https://doi.org/10.1134/S1068162021020151
- Summerton J. // Int. J. Pept. Res. Ther. 2003. V. 10. P. 215–236. https://doi.org/10.1007/s10989-004-4913-y
- Bhadra J., Pattanayak S., Sinha S. // Curr. Protoc. Nucleic Acid Chem. 2015. V. 62. P. 4.65.1–4.65.26. https://doi.org/10.1002/0471142700.nc0465s62
- Braasch D., Nulf C., Corey D. // Curr. Protoc. Nucleic Acid Chem. 2002. V. 9. P. 4.11.1–4.11.18. https://doi.org/10.1002/0471142700.nc0411s09
- Kostov O., Páv O., Rosenberg I. // Curr. Protoc. Nucleic Acid Chem. 2017. V. 70. P. 4.76.1–4.76.22. https://doi.org/10.1002/cpnc.35
- Micklefield J. // Curr. Med. Chem. 2001. V. 8. P. 1157– 1179. https://doi.org/10.2174/0929867013372391
- Lee H., Jeon J., Lim J., Choi H., Yoon Y., Kim S. // Org. Lett. 2007. V. 9. P. 3291–3293. https://doi.org/10.1021/ol071215h
- Купрюшкин М.С., Пышный Д.В., Стеценко Д.А. // Act. Nat. 2014. Т. 6. C. 116–118. https://doi.org/10.32607/20758251-2014-6-4-116-118
- Kuznetsov N.A., Kupryushkin M.S., Abramova T.V., Kuznetsova A.A., Miroshnikova A.D., Stetsenko D.A., Pyshnyi D.V., Fedorova O.S. // Mol. Biosyst. 2016. V. 12. P. 67–75. https://doi.org/10.1039/c5mb00692a
- Новопашина Д.С., Назаров А.С., Воробьева М.А., Купрюшкин М.С., Давыдова А.С., Ломзов А.А., Пышный Д.В., Altman S., Веньяминова А.Г. // Мол. биология. 2018. T. 52. С. 1045–1054. https://doi.org/10.1134/S0026898418060137
- Garafutdinov R.R., Sakhabutdinova A.R., Kupryushkin M.S., Pyshnyi D.V. // Biochimie. 2020. V. 168. P. 259–267. https://doi.org/10.1016/j.biochi.2019.11.013
- Markov A.V., Kupryushkin M.S., Goncharova E.P., Amirkhanov R.N., Vasilyeva S.V., Pyshnyi D.V., Zenkova M.A., Logashenko E.B. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 774–782. https://doi.org/10.1134/S1068162019060268
- Chubarov A.S., Oscorbin I.P., Filipenko M.L., Lomzov A.A., Pyshnyi D.V. // Diagnostics. 2020. V. 10. P. 872. https://doi.org/10.3390/diagnostics10110872
- Pavlova A.S., Yakovleva K.I., Epanchitseva A.V., Kupryushkin M.S., Pyshnaya I.A., Pyshnyi D.V., Ryabchikova E.I., Dovydenko I.S. // Int. J. Mol. Sci. 2021. V. 22. P. 9784. https://doi.org/10.3390/ijms22189784
- Kupryushkin M.S., Filatov A.V., Mironova N.L., Patutina O.A., Chernikov I.V., Chernolovskaya E.L., Zenkova M.A., Pyshnyi D.V., Stetsenko D.A., Altman S., Vlassov V.V. // Mol. Ther. Nucleic Acids. 2022. V. 27. P. 211–226. https://doi.org/10.1016/j.omtn.2021.11.025
- Stetsenko D., Kupryshkin M., Pyshnyi D. // Int. Application WO2016028187A1, 2016.
- Froehler B. // Tetrahedron Lett. 1986. V. 27. P. 5575– 5578. https://doi.org/10.1016/S0040-4039(00)85269-7
- Iyer R., Devlin T., Habus I., Yu D., Johnson S., Agrawal S. // Tetrahedron Lett. 1996. V. 37. P. 1543–1546. https://doi.org/10.1016/0040-4039(96)00067-6
- Peyrottes S., Vasseur J.-J., Imbach J., Rayner B. // Tetrahedron Lett. 1996. V. 37. P. 5869–5872. https://doi.org/10.1016/0040-4039(96)01250-6
- Laurent A., Debart F., Rayner B. // Tetrahedron Lett. 1997. V. 38. P. 5285–5288. https://doi.org/10.1016/S0040-4039(97)01153-2
- Devlin T., Iyer R., Johnson S., Agrawal S. // Bioorg. Med. Chem. Lett. 1996. V. 6. P. 2663–2668. https://doi.org/10.1016/S0960-894X(96)00498-2
- Peyrottes S., Vasseur J.-J., Imbach J.L., Rayner B. // Nucleosides and Nucleotides. 1997. V. 16. P. 1551– 1554. https://doi.org/10.1080/07328319708006227
- Iyer R., Yu D., Devlin T., Ho N.-H., Johnson S., Agrawal S. // Nucleosides and Nucleotides. 1997. V. 16. P. 1491–1495. https://doi.org/10.1080/07328319708006214
- Стеценко Д.А., Купрюшкин М.С., Пышный Д.В. // Заявка RU2014134383A, 2014.
- Paul S., Roy S., Monfregola L., Shang S., Shoemaker R., Caruthers M. // J. Am. Chem. Soc. 2015. V. 137. P. 3253–3264. https://doi.org/10.1021/ja511145h
- Prokhorova D.V., Chelobanov B.P., Burakova E.A., Fokina A.A., Stetsenko D.A. // Russ. J. Bioorg. Chem. 2017. V. 43. P. 38–42. https://doi.org/10.1134/S1068162017010071
- Chelobanov B.P., Burakova E.A., Prokhorova D.V., Fokina A.A., Stetsenko D.A. // Russ. J. Bioorg. Chem. 2017. V. 43. P. 664–668. https://doi.org/10.1134/S1068162017060024
- Kupryushkin M.S., Zharkov T.D., Ilina E.S., Markov O.V., Kochetkova A.S., Akhmetova M.M., Lomzov A.A., Pyshnyi D.V., Lavrik O.I., Khodyreva S.N. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 719–733. https://doi.org/10.1134/S1068162021030110
- Carpino L., Han G. // J. Org. Chem. 1972. V. 37. P. 3404–3409. https://doi.org/10.1021/jo00795a005
- Bazhenov M.A., Shernyukov A.V., Kupryushkin M.S., Pyshnyi D.V. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 699–708. https://doi.org/10.1134/S1068162019060074
- Jiménez E.I., Gibard C., Krishnamurthy R. // Angew. Chemie Int. Ed. 2021. V. 60. P. 10775–10783. https://doi.org/10.1002/anie.202015910
- Preobrazhenskaya N.N. // Russ. Chem. Rev. 1972. V. 41. P. 54–65. https://doi.org/10.1070/RC1972v041n01ABEH002030
- Johnsson R., Bogojeski J., Damha M. // Bioorg. Med. Chem. Lett. 2014. V. 24. P. 2146–2149. https://doi.org/10.1016/j.bmcl.2014.03.032
- Gololobov Y.G., Zhmurova I.N., Kasukhin L.F. // Tetrahedron. 1981. V. 37. P. 437–472. https://doi.org/10.1016/S0040-4020(01)92417-2
- Jones A. // Int. J. Biol. Macromol. 1979. V. 1. P. 194–207. https://doi.org/10.1016/0141-8130(79)90013-8
- Boal J., Wilk A., Harindranath N., Max E., Kempe T., Beaucage S. // Nucleic Acids Res. 1996. V. 24. P. 3115– 3117. https://doi.org/10.1093/nar/24.15.3115
- Pyshnyi D.V., Lomzov A.A., Pyshnaya I.A., Ivanova E.M. // J. Biomol. Struct. Dyn. 2006. V. 23. P. 567–579. https://doi.org/10.1080/07391102.2006.10507082
- Преч Э., Бюльманн Ф., Аффольтер К. // Определение строения органических соединений. Таблицы спектральных данных. Москва: Мир, 2006. 439 с.
Supplementary files
