Neuronal-glial interactions in learning and behavior under normal conditions and during oncogenesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review examines modern studies of glial-neuronal interactions in the formation of new experiences under normal conditions and in the development of pathology in the brain, in particular, tumor growth. According to modern concepts, glial cells play a key role in synaptic plasticity, regulation of neural activity and memory formation. In the oncological process in the brain, the activity of atypical cells affects the interaction of neurons and glia, changing the functional architecture of the brain, which is not always accompanied by loss of function associated with the area of tumor localization. The analyzed data suggest the presence of mutual adaptation of healthy and atypical cells to co-existence, as well as the possibility of changing the metabolism of tumor cells by specializing neurons.

Full Text

Restricted Access

About the authors

Ya. A. Venerina

Sechenov University

Author for correspondence.
Email: y.a.venerina@yandex.ru
Russian Federation, Moscow

А. А. Venerin

Sechenov University

Email: y.a.venerina@yandex.ru
Russian Federation, Moscow

А. G. Gorkin

Institute of Psychology of the Russian Academy of Sciences

Email: y.a.venerina@yandex.ru
Russian Federation, Moscow

Yu. I. Alexandrov

Institute of Psychology of the Russian Academy of Sciences

Email: y.a.venerina@yandex.ru
Russian Federation, Moscow

References

  1. Александров Ю.И. Системогенез и смерть нейронов. Нейрохимия. 2004. 21 (1): 5–14.
  2. Александров Ю.И. Научение и память: традиционный и системный подходы. Журнал высш. нервн. деят. им. И.П. Павлова. 2005. 55 (6): 842–860.
  3. Александров Ю.И. Опасность междисциплинарных исследований и ее преодоление. Психологическое знание: виды, источники, пути построения: Сборник статей. 2021. 159–198. https://doi.org/10.38098/thry_21_0434_008
  4. Анохин П.К. Проблема центра и периферии. 1935.
  5. Анохин П.К. Принципы системной организации функций. М.: Наука, 1973.
  6. Бастриков О.Ю., Исаева Е.Р., Григоричева Е.А., Цейликман В.Э. Эффективность психокоррекционных вмешательств в управлении сердечнососудистым риском. Артериальная гипертензия. 2022. 28 (3): 235–242. https://doi.org/10.18705/1607-419X-2022-28-3-235-242
  7. Бернштейн Н.А. Очерки о физиологии движений и физиологии активности. М.: Медицина, 1966.
  8. Гаврилов В.В., Онуфриев М.В., Моисеева Ю.В., Александров Ю.И., Гуляева Н.В. Хронические социальные стрессы изоляции и скученности у крыс по-разному влияют на научение инструментальному поведению и состояние гипоталамо-гипофизарно-адренокортикальной системы. Журнал высшей нервной деятельности им. И.П. Павлова. 2021. 71 (5): 710–719. https://doi.org/10.31857/S004446772105004X
  9. Ухтомский А. А. Доминанта. М.: Наука, 1966.
  10. Aabedi A.A., Lipkin B., Kaur J., Kakaizada S., Valdivia C., Reihl S., Young J.S., Lee A.T., Krishna S., Berger M.S., Chang E.F., Brang D., Hervey-Jumper S.L. Functional alterations in cortical processing of speech in glioma-infiltrated cortex. Proc Natl Acad Sci U S A. 2021. 118(46): e2108959118. https://doi.org/10.1073/pnas.2108959118
  11. Adamsky A., Kol A., Kreisel T., Doron A., Ozeri-Engelhard N., Melcer T., Refaeli R., Horn H., Regev L., Groysman M., London M., Goshen I. Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement. Cell. 2018. 174(1): 59–71.e14. https://doi.org/10.1016/j.cell.2018.05.002
  12. Alberini C.M., Cruz E., Descalzi G., Bessières B., Gao V. Astrocyte glycogen and lactate: New insights into learning and memory mechanisms. Glia. 2018. 66(6): 1244–1262. https://doi.org/10.1002/glia.23250
  13. Alexandrov Y.I., Pletnikov M.V. Neuronal metabolism in learning and memory: The anticipatory activity perspective. Neurosci Biobehav Rev. 2022. 137: 104664. https://doi.org/10.1016/j.neubiorev.2022.104664
  14. Araque A., Carmignoto G., Haydon P.G., Oliet S.H., Robitaille R., Volterra A. Gliotransmitters travel in time and space. Neuron. 2014. 81(4): 728–739. https://doi.org/10.1016/j.neuron.2014.02.007
  15. Arizono M., Inavalli V.V.G.K., Panatier A., Pfeiffer T., Angibaud J., Levet F., Ter Veer M.J.T., Stobart J., Bellocchio L., Mikoshiba K., Marsicano G., Weber B., Oliet S.H.R., Nägerl U.V. Structural basis of astrocytic Ca2+ signals at tripartite synapses. Nat Commun. 2020. 11(1): 1906. https://doi.org/10.1038/s41467-020-15648-4
  16. Bacmeister C.M., Huang R., Osso L.A., Thornton M.A., Conant L., Chavez A.R., Poleg-Polsky A., Hughes E.G. Motor learning drives dynamic patterns of intermittent myelination on learning-activated axons. Nat Neurosci. 2022. 25(10): 1300–1313. https://doi.org/10.1038/s41593-022-01169-4
  17. Baltan S., Jawaid S.S., Chomyk A.M., Kidd G.J., Chen J., Battapady H.D., Chan R., Dutta R., Trapp B.D. Neuronal hibernation following hippocampal demyelination. Acta Neuropathol Commun. 2021. 9(1): 34. https://doi.org/10.1186/s40478-021-01130-9
  18. Bandt S.K., Roland J.L., Pahwa M., Hacker C.D., Bundy D.T., Breshears J.D., Sharma M., Shimony J.S., Leuthardt E.C. The impact of high grade glial neoplasms on human cortical electrophysiology. PLoS One. 2017. 12(3): e0173448. https://doi.org/10.1371/journal.pone.0173448
  19. Baraban M., Koudelka S., Lyons D.A. Ca 2+ activity signatures of myelin sheath formation and growth in vivo. Nat Neurosci. 2018 Jan; 21(1): 19–23. https://doi.org/10.1038/s41593-017-0040-x
  20. Barres B.A., Silverstein B.E., Corey D.P., Chun L.L. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron. 1988. 1: 791–803. https://doi.org/10.1016/0896-6273(88)90127-4
  21. Barron T., Kim J.H. Neuronal input triggers Ca2+ influx through AMPA receptors and voltage-gated Ca2+ channels in oligodendrocytes. Glia. 2019. 67(10): 1922–1932. https://doi.org/10.1002/glia.23670
  22. Bayón-Cordero L., Ochoa-Bueno B.I., Ruiz A., Ozalla M., Matute C., Sánchez-Gómez M.V. GABA Receptor Agonists Protect From Excitotoxic Damage Induced by AMPA in Oligodendrocytes. Front Pharmacol. 2022. 13: 897056.
  23. https://doi.org/10.3389/fphar.2022.897056
  24. Bellot-Saez A., Cohen G., van Schaik A., Ooi L.W., Morley J., Buskila Y. Astrocytic modulation of cortical oscillations. Sci Rep. 2018. 8(1): 11565. https://doi.org/10.1038/s41598-018-30003-w
  25. Bengtsson S.L., Nagy Z., Skare S., Forsman L., Forssberg H., Ullén F. Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci. 2005. 8(9): 1148–1150. https://doi.org/10.1038/nn1516
  26. Ben-Shaanan T.L., Schiller M., Azulay-Debby H., Korin B., Boshnak N., Koren T., Krot M., Shakya J., Rahat M.A., Hakim F., Rolls A. Modulation of anti-tumor immunity by the brain’s reward system. Nat Commun. 2018. 9(1): 2723. https://doi.org/10.1038/s41467-018-05283-5
  27. Bernardinelli Y., Randall J., Janett E., Nikonenko I., König S., Jones E.V., Flores C.E., Murai K.K., Bochet C.G., Holtmaat A., Muller D. Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Curr Biol. 2014. 24(15): 1679–1688. https://doi.org/10.1016/j.cub.2014.06.025
  28. Bojarskaite L., Bjørnstad D.M., Pettersen K.H., Cunen C., Hermansen G.H., Åbjørsbråten K.S., Chambers A.R., Sprengel R., Vervaeke K., Tang W., Enger R., Nagelhus E.A. Astrocytic Ca2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep. Nat Commun. 2020. 11(1): 3240. https://doi.org/10.1038/s41467-020-17062-2
  29. Bonvento G., Bolaños J.P. Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab. 2021. 33(8): 1546–1564. https://doi.org/10.1016/j.cmet.2021.07.006
  30. Boussen S., Velly L., Benar C., Metellus P., Bruder N., Trébuchon A. In Vivo Tumor Mapping Using Electrocorticography Alterations During Awake Brain Surgery: A Pilot Study. Brain Topogr. 2016/ 29(5): 766–782. https://doi.org/10.1007/s10548-016-0502-6
  31. Carlson L.E., Zelinski E., Toivonen K., Flynn M., Qureshi M., Piedalue K.A., Grant R. Mind-Body Therapies in Cancer: What Is the Latest Evidence? Curr Oncol Rep. 2017. 19(10): 67. https://doi.org/10.1007/s11912-017-0626-1
  32. Carreiras M., Seghier M.L., Baquero S., Estévez A., Lozano A., Devlin J.T., Price C.J. An anatomical signature for literacy. Nature. 2009. 461(7266): 983–986. https://doi.org/10.1038/nature08461
  33. Cavaccini A., Durkee C., Kofuji P., Tonini R., Araque A. Astrocyte Signaling Gates Long-Term Depression at Corticostriatal Synapses of the Direct Pathway. J Neurosci. 2020. 40(30): 5757–5768. https://doi.org/10.1523/JNEUROSCI.2369-19.2020
  34. Chen X., Guo Y., Zhang T., Lin J., Ding X. Effects of cognitive behavioral therapy in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. Worldviews Evid Based Nurs. 2024. 21(3): 288–306.
  35. https://doi.org/10.1111/wvn.12705
  36. Deemyad T., Lüthi J., Spruston N. Astrocytes integrate and drive action potential firing in inhibitory subnetworks. Nat Commun. 2018. 9(1): 4336. https://doi.org/10.1038/s41467-018-06338-3
  37. Descalzi G., Gao V., Steinman M.Q., Suzuki A., Alberini C.M. Lactate from astrocytes fuels learning-induced mRNA translation in excitatory and inhibitory neurons. Commun Biol. 2019. 2: 247. https://doi.org/10.1038/s42003-019-0495-2
  38. Diaz-Aparicio I., Paris I., Sierra-Torre V., Plaza-Zabala A., Rodríguez-Iglesias N., Márquez-Ropero M., Beccari S., Huguet P., Abiega O., Alberdi E., Matute C., Bernales I., Schulz A., Otrokocsi L., Sperlagh B., Happonen K.E., Lemke G., Maletic-Savatic M., Valero J., Sierra A. Microglia Actively Remodel Adult Hippocampal Neurogenesis through the Phagocytosis Secretome. J Neurosci. 2020. 40(7): 1453–1482. https://doi.org/10.1523/JNEUROSCI.0993-19.2019
  39. Dubey M., Pascual-Garcia M., Helmes K., Wever D.D., Hamada M.S., Kushner S.A., Kole M.H.P. Myelination synchronizes cortical oscillations by consolidating parvalbumin-mediated phasic inhibition. Elife. 2022. 11: e73827. https://doi.org/10.7554/eLife.73827
  40. Durkee C.A., Covelo A., Lines J., Kofuji P., Aguilar J., Araque A. Gi/o protein-coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission. Glia. 2019. 67(6): 1076–1093. https://doi.org/10.1002/glia.23589
  41. Escalada P., Ezkurdia A., Ramírez M.J., Solas M. Essential Role of Astrocytes in Learning and Memory. Int J Mol Sci. 2024. 25(3): 1899. https://doi.org/10.3390/ijms25031899
  42. Esposito R., Mattei P.A., Briganti C., Romani G.L., Tartaro A., Caulo M. Modifications of default-mode network connectivity in patients with cerebral glioma. PLoS One. 2012. 7(7): e40231. https://doi.org/10.1371/journal.pone.0040231
  43. Evans J.J., Alkaisi M.M., Sykes P.H. Tumor initiation: a discussion on evidence for a “Load-Trigger” mechanism. Cell Biochem Biophys 2019. 77: 293–308. https://doi. org/10.1007/s12013-019-00888-z
  44. Fekonja L.S., Wang Z., Cacciola A., Roine T., Aydogan D.B., Mewes D., Vellmer S., Vajkoczy P., Picht T. Network analysis shows decreased ipsilesional structural connectivity in glioma patients. Commun Biol. 2022. 5(1): 258. https://doi.org/10.1038/s42003-022-03190-6
  45. Fellin T., Halassa M.M., Terunuma M., Succol F., Takano H., Frank M., Moss S.J., Haydon P.G. Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo. Proc Natl Acad Sci U S A. 2009. 106(35): 15037–42. https://doi.org/10.1073/pnas.0906419106
  46. Ficarra S., Thomas E., Bianco A., Gentile A., Thaller P., Grassadonio F., Papakonstantinou S., Schulz T., Olson N., Martin A., Wagner C., Nordström A., Hofmann H. Impact of exercise interventions on physical fitness in breast cancer patients and survivors: a systematic review. Breast Cancer. 2022. 29 (3): 402–418. https://doi.org/10.1007/s12282-022-01347-z
  47. Garcia-Silva J., Borrego I.R.S., Navarrete N.N., Peralta-Ramirez M.I., Águila F.J., Caballo V.E. Efficacy of cognitive-behavioural therapy for lifestyle modification in metabolic syndrome: a randomised controlled trial with a 18-months follow-up. Psychol Health. 2024. 39(2): 195–215. https://doi.org/10.1080/08870446.2022.2055023
  48. Gibson E.M., Purger D., Mount C.W., Goldstein A.K., Lin G.L., Wood L.S., Inema I., Miller S.E., Bieri G., Zuchero J.B., Barres B.A., Woo P.J., Vogel H., Monje M. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science. 2014. 344(6183): 1252304. https://doi.org/10.1126/science.1252304
  49. Guerra-Gomes S., Sousa N., Pinto L., Oliveira J.F. Functional Roles of Astrocyte Calcium Elevations: From Synapses to Behavior. Front Cell Neurosci. 2018. 11: 427. https://doi.org/10.3389/fncel.2017.00427
  50. Gulyaeva N.V. Glucocorticoids Orchestrate Adult Hippocampal Plasticity: Growth Points and Translational Aspects. Biochemistry (Mosc). 2023. 88(5): 565–589. https://doi.org/10.1134/S0006297923050012
  51. Gyllensten L., Malmfors T. Myelinization of the optic nerve and its dependence on visual function- a quantitative investigation in mice. J Embryol Exp Morphol. 1963. 11: 255–66.
  52. Han J., Kesner P., Metna-Laurent M., Duan T., Xu L., Georges F., Koehl M., Abrous D.N., Mendizabal-Zubiaga J., Grandes P., Liu Q., Bai G., Wang W., Xiong L., Ren W., Marsicano G., Zhang X. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell. 2012. 148(5): 1039–1050. https://doi.org/10.1016/j.cell.2012.01.037
  53. Henning L., Unichenko P., Bedner P., Steinhäuser C., Henneberger C. Overview Article Astrocytes as Initiators of Epilepsy. Neurochem Res. 2023. 48(4): 1091–1099. https://doi.org/10.1007/s11064-022-03773-z
  54. Hirbec H., Déglon N., Foo L.C., Goshen I., Grutzendler J., Hangen E., Kreisel T., Linck N., Muffat J., Regio S., Rion S., Escartin C. Emerging technologies to study glial cells. Glia. 2020. ff10.1002/glia.23780ff. ffhal-02448198f
  55. Hirrlinger J., Nimmerjahn A. A perspective on astrocyte regulation of neural circuit function and animal behavior. Glia. 2022. 70(8): 1554–1580. https://doi.org/10.1002/glia.24168
  56. Israfil I., Ah Yu., Ferry E. Effect of Cognitive Behavioral Therapy on The Behavior of Patients with Cardiovascular Disease: A Systematic Review. Gaceta Médica de Caracas. 2023. 131: 478. 10.47307/GMC.2023.131.s3.22.
  57. Jütten K., Mainz V., Delev D., Gauggel S., Binkofski F., Wiesmann M., Clusmann H., Na C.H. Asymmetric tumor-related alterations of network-specific intrinsic functional connectivity in glioma patients. Hum Brain Mapp. 2020. 41(16): 4549–4561. https://doi.org/10.1002/hbm.25140
  58. Kaller M.S., Lazari A., Blanco-Duque C., Sampaio-Baptista C., Johansen-Berg H. Myelin plasticity and behaviour-connecting the dots. Curr Opin Neurobiol. 2017. 47: 86–92. https://doi.org/10.1016/j.conb.2017.09.014
  59. Káradóttir R., Attwell D. Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience. 2007. 145(4): 1426–1438.
  60. https://doi.org/10.1016/j.neuroscience.2006.08.070
  61. Kato D., Wake H., Lee P.R., Tachibana Y., Ono R., Sugio S., Tsuji Y., Tanaka Y.H., Tanaka Y.R., Masamizu Y., Hira R., Moorhouse A.J., Tamamaki N., Ikenaka K., Matsukawa N., Fields R.D., Nabekura J., Matsuzaki M. Motor learning requires myelination to reduce asynchrony and spontaneity in neural activity. Glia. 2020. 68(1): 193–210. https://doi.org/10.1002/glia.23713
  62. Kato D., Wake H. Myelin plasticity modulates neural circuitry required for learning and behavior. Neurosci Res. 2021. 167: 11–16. https://doi.org/10.1016/j.neures.2020.12.005
  63. Khosravi N., Stoner L., Farajivafa V., Hanson E.D. Exercise training, circulating cytokine levels and immune function in cancer survivors: A meta-analysis. Brain Behav Immun. 2019. 81: 92–104. https://doi.org/10.1016/j.bbi.2019.08.187
  64. Kjaerby C., Rasmussen R., Andersen M., Nedergaard M. Does Global Astrocytic Calcium Signaling Participate in Awake Brain State Transitions and Neuronal Circuit Function? Neurochem Res. 2017. 42(6): 1810–1822. https://doi.org/10.1007/s11064-017-2195-y
  65. Kim Y.S., Choi J., Yoon B.E. Neuron-Glia Interactions in Neurodevelopmental Disorders. Cells. 2020. 9(10): 2176. https://doi.org/10.3390/cells9102176
  66. Klassen O., König A., von Haehling S., Braulke F. Kardiovaskuläre Fitness in der Onkologie: Bewegung und Sport (Cardiovascular fitness in oncology: Exercise and sport). Internist (Berl). 2020. 61(11): 1140–1150. https://doi.org/10.1007/s00108-020-00882-1
  67. Kofuji P., Araque A. Astrocytes and Behavior. Annu Rev Neurosci. 2021. 44: 49–67. https://doi.org/10.1146/annurev-neuro-101920-112225
  68. Krasnow A.M., Ford M.C., Valdivia L.E., Wilson S.W., Attwell D. Regulation of developing myelin sheath elongation by oligodendrocyte calcium transients in vivo. Nat Neurosci. 2018. 21(1): 24–28. https://doi.org/10.1038/s41593-017-0031-y
  69. Krishna S., Choudhury A., Keough M.B., Seo K., Ni L., Kakaizada S., Lee A., Aabedi A., Popova G., Lipkin B., Cao C., Nava Gonzales C., Sudharshan R., Egladyous A., Almeida N., Zhang Y., Molinaro A.M., Venkatesh H.S., Daniel A.G.S., Shamardani K., Hyer J., Chang E.F., Findlay A., Phillips J.J., Nagarajan S., Raleigh D.R., Brang D., Monje M., Hervey-Jumper S.L. Glioblastoma remodelling of human neural circuits decreases survival. Nature. 2023. 617(7961): 599–607. https://doi.org/10.1038/s41586-023-06036-1
  70. Kukley M. Recent Insights into the Functional Role of AMPA Receptors in the Oligodendrocyte Lineage Cells In Vivo. Int J Mol Sci. 2023. 24(4): 4138. https://doi.org/10.3390/ijms24044138
  71. Kurioka T., Mogi S., Tanaka M., Yamashita T. Activity-Dependent Neurodegeneration and Neuroplasticity of Auditory Neurons Following Conductive Hearing Loss in Adult Mice. Cell Mol Neurobiol. 2021. 41(1): 31–42. https://doi.org/10.1007/s10571-020-00829-y
  72. Lawal O., Ulloa Severino F.P., Eroglu C. The role of astrocyte structural plasticity in regulating neural circuit function and behavior. Glia. 2022. 70(8): 1467–1483. https://doi.org/10.1002/glia.24191
  73. Lines J., Martin E.D., Kofuji P., Aguilar J., Araque A. Astrocytes modulate sensory-evoked neuronal network activity. Nat Commun. 2020. 11(1): 3689. https://doi.org/10.1038/s41467-020-17536-3
  74. Lundgaard I., Luzhynskaya A., Stockley J.H., Wang Z., Evans K.A., Swire M., Volbracht K., Gautier H.O., Franklin R.J., Ffrench-Constant C., Attwell D., Káradóttir R.T. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol. 2013. 11(12): e1001743. https://doi.org/10.1371/journal.pbio.1001743
  75. Maingret N., Girardeau G., Todorova R., Goutierre M., Zugaro M. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat Neurosci. 2016. 19(7): 959–64. https://doi.org/10.1038/nn.4304
  76. Makinodan M., Rosen K.M., Ito S., Corfas G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science. 2012. 337(6100): 1357–60. https://doi.org/10.1126/science.1220845
  77. Mandal A.S., Wiener C., Assem M., Romero-Garcia R., Coelho P., McDonald A., Woodberry E., Morris R.C., Price S.J., Duncan J., Santarius T., Suckling J., Hart M.G., Erez Y. Tumour-infiltrated cortex participates in large-scale cognitive circuits. Cortex. 2024. 173: 1–15. https://doi.org/10.1016/j.cortex.2024.01.004
  78. McKenzie I.A., Ohayon D., Li H., de Faria J.P., Emery B., Tohyama K., Richardson W.D. Motor skill learning requires active central myelination. Science. 2014. 346(6207): 318–322. https://doi.org/10.1126/science.1254960
  79. Navarrete M., Cuartero M.I., Palenzuela R., Draffin J.E., Konomi A., Serra I., Colié S., Castaño-Castaño S., Hasan M.T., Nebreda Á.R., Esteban J.A. Astrocytic p38α MAPK drives NMDA receptor-dependent long-term depression and modulates long-term memory. Nat Commun. 2019. 10(1): 2968. https://doi.org/10.1038/s41467-019-10830-9
  80. Nicholson M., Wood R.J., Gonsalvez D.G., Hannan A.J., Fletcher J.L., Xiao J., Murray S.S. Remodelling of myelinated axons and oligodendrocyte differentiation is stimulated by environmental enrichment in the young adult brain. Eur J Neurosci. 2022 Dec; 56(12): 6099–6114. https://doi.org/10.1111/ejn.15840
  81. Nishiyama A., Shimizu T., Sherafat A., Richardson W.D. Life-long oligodendrocyte development and plasticity. Semin Cell Dev Biol. 2021. 116: 25–37. https://doi.org/10.1016/j.semcdb.2021.02.004
  82. Noori R., Park D., Griffiths J.D., Bells S., Frankland P.W., Mabbott D., Lefebvre J. Activity-dependent myelination: A glial mechanism of oscillatory self-organization in large-scale brain networks. Proc Natl Acad Sci U S A. 2020. 117(24): 13227–13237. https://doi.org/10.1073/pnas.1916646117
  83. Oliveira J.F., Araque A. Astrocyte regulation of neural circuit activity and network states. Glia. 2022. 70(8): 1455–1466. https://doi.org/10.1002/glia.24178
  84. Pajevic S., Plenz D., Basser P.J., Fields R.D. Oligodendrocyte-mediated myelin plasticity and its role in neural synchronization. Elife. 2023. 12: e81982. https://doi.org/10.7554/eLife.81982
  85. Pankratov Y., Lalo U. Role for astroglial α1-adrenoreceptors in gliotransmission and control of synaptic plasticity in the neocortex. Front. Cell. Neurosci. 2015. 9: 230. https://doi.org/10.3389/fncel.2015.00230
  86. Paniccia J.E., Otis J.M., Scofield M.D. Looking to the stars for answers: Strategies for determining how astrocytes influence neuronal activity. Comput Struct Biotechnol J. 2022. 20: 4146–4156. https://doi.org/10.1016/j.csbj.2022.07.052
  87. Pasquini L., Jenabi M., Yildirim O., Silveira P., Peck K.K., Holodny A.I. Brain Functional Connectivity in Low- and High-Grade Gliomas: Differences in Network Dynamics Associated with Tumor Grade and Location. Cancers (Basel). 2022. 14(14): 3327. https://doi.org/10.3390/cancers14143327
  88. Pellerin L., Magistretti P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A. 1994. 91(22): 10625–9. https://doi.org/10.1073/pnas.91.22.10625
  89. Pérez-Rodríguez D.R., Blanco-Luquin I., Mendioroz M. The Participation of Microglia in Neurogenesis: A Review. Brain Sci. 2021. 11(5): 658. https://doi.org/10.3390/brainsci11050658
  90. Péter M., Héja L. High-Frequency Imaging Reveals Synchronised Delta- and Theta-Band Ca2+ Oscillations in the Astrocytic Soma In Vivo. Int J Mol Sci. 2024. 25(16): 8911. https://doi.org/10.3390/ijms25168911
  91. Poort H., Peters M.E.W.J., van der Graaf W.T.A., Nieuwkerk P.T., van de Wouw A.J., Nijhuis-van der Sanden M.W.G., Bleijenberg G., Verhagen C.A.H.H.V.M., Knoop H. Cognitive behavioral therapy or graded exercise therapy compared with usual care for severe fatigue in patients with advanced cancer during treatment: a randomized controlled trial. Ann Oncol. 2020. 31(1): 115–122. https://doi.org/10.1016/j.annonc.2019.09.002
  92. Prichard J., Rothman D., Novotny E., Petroff O., Kuwabara T., Avison M., Howseman A., Hanstock C., Shulman R. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci U S A. 1991. 88(13): 5829–5831. https://doi.org/10.1073/pnas.88.13.5829
  93. Poskanzer K.E., Yuste R. Astrocytes regulate cortical state switching in vivo. Proc Natl Acad Sci U S A. 2016. 113(19): E2675–84. https://doi.org/10.1073/pnas.1520759113
  94. Rodríguez-Cañamero S., Cobo-Cuenca A.I., Carmona-Torres J.M., Pozuelo-Carrascosa D.P., Santacruz-Salas E., Rabanales-Sotos J.A., Cuesta-Mateos T., Laredo-Aguilera J.A. Impact of physical exercise in advanced-stage cancer patients: Systematic review and meta-analysis. Cancer Med. 2022. 11(19): 3714–3727. https://doi.org/10.1002/cam4.4746
  95. Sandler U., Tsitolovsky L. Neural cell behavior and fuzzy logic. New York: Springer. 2008.
  96. Santello M., Toni N., Volterra A. Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci. 2019. 22(2): 154–166. https://doi.org/10.1038/s41593-018-0325-8
  97. Sardinha V.M., Guerra-Gomes S., Caetano I., Tavares G., Martins M., Reis J.S., Correia J.S., Teixeira-Castro A., Pinto L., Sousa N., Oliveira J.F. Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function. Glia. 2017. 65(12): 1944–1960. https://doi.org/10.1002/glia.23205
  98. Saviola F., Zigiotto L., Novello L., Zacà D., Annicchiarico L., Corsini F., Rozzanigo U., Papagno C., Jovicich J., Sarubbo S. The role of the default mode network in longitudinal functional brain reorganization of brain gliomas. Brain Struct Funct. 2022. 227(9): 2923–2937. https://doi.org/10.1007/s00429-022-02490-1
  99. Schafer D.P., Lehrman E.K., Kautzman A.G., Koyama R., Mardinly A.R., Yamasaki R., Ransohoff R.M., Greenberg M.E., Barres B.A., Stevens B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012. 74(4): 691–705. https://doi.org/10.1016/j.neuron.2012.03.026
  100. Schaff L.R., Mellinghoff I.K. Glioblastoma and Other Primary Brain Malignancies in Adults: A Review. JAMA. 2023. 329(7): 574–587. https://doi.org/10.1001/jama.2023.0023
  101. Schiera G., Di Liegro C.M., Di Liegro I. Cell-to-Cell Communication in Learning and Memory: From Neuro- and Glio-Transmission to Information Exchange Mediated by Extracellular Vesicles. Int J Mol Sci. 2019. 21(1): 266. https://doi.org/10.3390/ijms21010266
  102. Schmidt S., Gull S., Herrmann K.H., Boehme M., Irintchev A., Urbach A., Reichenbach J.R, Klingner C.M., Gaser C., Witte O.W. Experience-dependent structural plasticity in the adult brain: How the learning brain grows. Neuroimage. 2021. 225: 117502. https://doi.org/10.1016/j.neuroimage.2020.117502
  103. Scholz J., Klein M.C., Behrens T.E., Johansen-Berg H. Training induces changes in white-matter architecture. Nat Neurosci. 2009. 12(11): 1370–1371. https://doi.org/10.1038/nn.2412
  104. Semyanov A. Spatiotemporal pattern of calcium activity in astrocytic network. Cell Calcium. 2019. 78: 15–25. https://doi.org/10.1016/j.ceca.2018.12.007
  105. Shan L., Zhang T., Fan K., Cai W., Liu H. Astrocyte-Neuron Signaling in Synaptogenesis. Front Cell Dev Biol. 2021. 9: 680301. https://doi.org/10.3389/fcell.2021.680301
  106. Sibille J., Dao Duc K., Holcman D., Rouach N. The neuroglial potassium cycle during neurotransmission: role of Kir4.1 channels. PLoS Comput Biol. 2015. 11(3): e1004137. https://doi.org/10.1371/journal.pcbi.1004137
  107. Smith A.M., Park T.I., Aalderink M., Oldfield R.L., Bergin P.S., Mee E.W., Faull R.L.M., Dragunow M. Distinct characteristics of microglia from neurogenic and non-neurogenic regions of the human brain in patients with Mesial Temporal Lobe Epilepsy. Front Cell Neurosci. 2022. 16: 1047928. https://doi.org/10.3389/fncel.2022.1047928
  108. Son H., Kim S., Jung D.H., Baek J.H., Lee D.H., Roh G.S., Kang S.S., Cho G.J., Choi W.S., Lee D.K., Kim H.J. Insufficient glutamine synthetase activity during synaptogenesis causes spatial memory impairment in adult mice. Sci Rep. 2019. 9(1): 252. https://doi.org/10.1038/s41598-018-36619-2
  109. Stagaard Janas M., Nowakowski R.S., Terkelsen O.B., Mollgard K. Glial cell differentiation in neuron-free and neuron-rich regions. I. Selective appearance of S-100 protein in radial glial cells of the hippocampal fimbria in human fetuses. Anat. Embryol. (Berl.). 1991b. 184: 549–558. https://doi.org/10.1007/BF00942577
  110. Steadman P.E., Xia F., Ahmed M., Mocle A.J., Penning A.R.A., Geraghty A.C., Steenland H.W., Monje M., Josselyn S.A., Frankland P.W. Disruption of Oligodendrogenesis Impairs Memory Consolidation in Adult Mice. Neuron. 2020. 105(1): 150–164.e6. https://doi.org/10.1016/j.neuron.2019.10.013
  111. Stevens B., Allen N.J., Vazquez L.E., Howell G.R., Christopherson K.S., Nouri N., Micheva K.D., Mehalow A.K., Huberman A.D., Stafford B., Sher A., Litke A.M., Lambris J.D., Smith S.J., John S.W., Barres B.A. The classical complement cascade mediates CNS synapse elimination. Cell. 2007. 131(6): 1164–1178. https://doi.org/10.1016/j.cell.2007.10.036
  112. Stoecklein V.M., Stoecklein S., Galiè F., Ren J., Schmutzer M., Unterrainer M., Albert N.L., Kreth F.W., Thon N., Liebig T., Ertl-Wagner B., Tonn J.C., Liu H. Resting-state fMRI detects alterations in whole brain connectivity related to tumor biology in glioma patients. Neuro Oncol. 2020. 22(9): 1388–1398. https://doi.org/10.1093/neuonc/noaa044
  113. Stogsdill J.A., Ramirez J., Liu D., Kim Y.H., Baldwin K.T., Enustun E., Ejikeme T., Ji R.R., Eroglu C. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature. 2017. 551(7679): 192–197. https://doi.org/10.1038/nature24638
  114. Stogsdill J.A., Eroglu C. The interplay between neurons and glia in synapse development and plasticity. Curr Opin Neurobiol. 2017. 42: 1–8. https://doi.org/10.1016/j.conb.2016.09.016
  115. Stout N.L., Baima J., Swisher A.K., Winters-Stone K.M., Welsh J. A Systematic Review of Exercise Systematic Reviews in the Cancer Literature (2005–2017). PM R. 2017. 9(9S2): S347–S384. https://doi.org/10.1016/j.pmrj.2017.07.074
  116. Streit W.J. Microglial response to brain injury: a brief synopsis. Toxicol Pathol. 2000. 28(1): 28–30. https://doi.org/10.1177/019262330002800104
  117. Sun W., Liu Z., Jiang X., Chen M.B., Dong H., Liu J., Südhof T.C., Quake S.R. Spatial transcriptomics reveal neuron-astrocyte synergy in long-term memory. Nature. 2024. 627(8003): 374–381. https://doi.org/10.1038/s41586-023-07011-6
  118. Swire M., Kotelevtsev Y., Webb D.J., Lyons D.A., Ffrench-Constant C. Endothelin signalling mediates experience-dependent myelination in the CNS. Elife. 2019. 8: e49493. https://doi.org/10.7554/eLife.49493
  119. Tauber H., Waehneldt T.V., Neuhoff V. Myelination in rabbit optic nerves is accelerated by artificial eye opening. Neurosci Lett. 1980. 16(3): 235–238. https://doi.org/10.1016/0304-3940(80)90003-8
  120. Tertil M., Skupio U., Barut J., Dubovyk V., Wawrzczak-Bargiela A., Soltys Z., Golda S., Kudla L., Wiktorowska L., Szklarczyk K., Korostynski M., Przewlocki R., Slezak M. Glucocorticoid receptor signaling in astrocytes is required for aversive memory formation. Transl Psychiatry. 2018 Nov 28; 8(1): 255. https://doi.org/10.1038/s41398-018-0300-x
  121. Venerin A.A., Venerina Y.A., Alexandrov Y.I. Cell functioning in norm and pathology in terms of the activity paradigm: Oncogenesis. Med Hypotheses. 2020. 144: 110240. https://doi.org/10.1016/j.mehy.2020.110240
  122. Venkataramani V., Tanev D.I., Strahle C., Studier-Fischer A., Fankhauser L., Kessler T., Körber C., Kardorff M., Ratliff M., Xie R., Horstmann H., Messer M., Paik S.P., Knabbe J., Sahm F., Kurz F.T., Acikgöz A.A., Herrmannsdörfer F., Agarwal A., Bergles D.E., Chalmers A., Miletic H., Turcan S., Mawrin C., Hänggi D., Liu H.K., Wick W., Winkler F., Kuner T. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 2019. 573(7775): 532–538. https://doi.org/10.1038/s41586-019-1564-x
  123. Venkatesh H.S., Morishita W., Geraghty A.C., Silverbush D., Gillespie S.M., Arzt M., Monje M. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019. 573(7775): 539–545. https://doi.org/10.1038/s41586-019-1563-y
  124. Vezzani A., Ravizza T., Bedner P., Aronica E., Steinhäuser C., Boison D. Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol. 2022. 18(12): 707–722. https://doi.org/10.1038/s41582-022-00727-5
  125. Wake H., Lee P.R., Fields R.D. Control of local protein synthesis and initial events in myelination by action potentials. Science. 2011. 333(6049): 1647–51. https://doi.org/10.1126/science.1206998
  126. Wake H., Ortiz F.C., Woo D.H., Lee P.R., Angulo M.C., Fields R.D. Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons. Nature Communications. 2015. 6: 7844. https://doi.org/10.1038/ncomms8844
  127. Wang C., Yue H., Hu Z., Shen Y., Ma J., Li J., Wang X.D., Wang L., Sun B., Shi P., Wang L., Gu Y. Microglia mediate forgetting via complement-dependent synaptic elimination. Science. 2020. 367(6478): 688–694. https://doi.org/10.1126/science.aaz2288
  128. Xiao L., Ohayon D., McKenzie I.A., Sinclair-Wilson A., Wright J.L., Fudge A.D., Emery B., Li H., Richardson W.D. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat Neurosci. 2016. 19(9): 1210–1217. https://doi.org/10.1038/nn.4351
  129. Yang J., Ruchti E., Petit J.M., Jourdain P., Grenningloh G., Allaman I., Magistretti P.J. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci U S A. 2014. 111(33): 12228–33. https://doi.org/10.1073/pnas.1322912111
  130. Zhang K., Förster R., He W., Liao X., Li J., Yang C., Qin H., Wang M., Ding R., Li R., Jian T., Wang Y., Zhang J., Yang Z., Jin W., Zhang Y., Qin S., Lu Y., Chen T., Stobart J., Weber B., Adelsberger H., Konnerth A., Chen X. Fear learning induces α7-nicotinic acetylcholine receptor-mediated astrocytic responsiveness that is required for memory persistence. Nat Neurosci. 2021. 24(12): 1686–1698. https://doi.org/10.1038/s41593-021-00949-8
  131. Zonouzi M., Scafidi J., Li P., McEllin B., Edwards J., Dupree J.L., Harvey L., Sun D., Hübner C.A., Cull-Candy S.G., Farrant M., Gallo V. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nat Neurosci. 2015. 18(5): 674–682. https://doi.org/10.1038/nn.3990

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Changes of metabolic cooperation of cells aimed at achieving the whole-organism result. (а) Achieving the whole-organism through the interaction of non-tumor cells in normal state. (б) Achieving the whole-organism through the interaction of non-tumor and tumor cells in pathology.

Download (317KB)

Copyright (c) 2025 Russian Academy of Sciences