ON THE MULTIPLICATIVE PROPERTY OF DEFINING POLYNOMIALS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The roots of the indicial polynomial constructed for a given linear ordinary differential operator provide information about the features of solutions of the corresponding homogeneous differential equation. Operators and equations whose coefficients are formal Laurent series are discussed. Solutions of the same kind are considered. These assumptions describe the structure of the indicial polynomial of the product of differential operators. This structural (multiplicative) property is preserved in the case of converging series.

作者简介

S. Abramov

Dorodnitsyn Computing Center, Federal Research Center Computer Science and Control, RAS

Email: sergeyabramov@mail.ru
Moscow, Russia

参考

  1. Коддингтон Э.А., Левинсон Н. Теория обыкновенных дифференциальных уравнений. М.: Изд-во иностр. лит., 1958.
  2. Туганбаев А.А. Теория колец. Арифметические модули и кольца. М.: МЦНМО, 2009.
  3. Картан А. Элементарная теория аналитических функций одного и нескольких комплексных переменных. М.: Изд-во иностр. лит., 1963.
  4. Henrici P. Applied and computational complex analysis. Vol. 1. John Willey & Sons, 1974.
  5. Abramov S. EG—eliminations // J. of Difference Equations and Applications. 1999. V 5. P. 393—433.
  6. Abramov S., Petkovsek M., Ryabenko A. Special formal series solutions of linear operator equations // Discrete Math. 2000. V 210. P 3-25.
  7. Maple online help: http://www.maplesoft.com/support/help/

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024