ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ДВУХФАЗНОЙ ФИЛЬТРАЦИИ С АКТИВНОЙ ПРИМЕСЬЮ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проведен сравнительный анализ точности схемы CABARET (второго порядка) со схемами WENO5 и A-WENO (пятого порядка по пространству и четвертого порядка по времени) при расчете различных задач Римана для невыпуклой системы законов сохранения модели двухфазной фильтрации с активной примесью. Показано, что при расчете этих задач схема CABARET имеет существенно более высокую точность по сравнению со схемами WENO, особенно в тех областях точного решения, где к ударным волнам примыкают центрированные волны разрежения. Библ. 30. Фиг. 4.

Об авторах

Т. С Шарифуллина

Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук

Email: tatiana_06.08@mail.ru
Новосибирск

А. А Черевко

Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук

Email: cherevko@mail.ru
Новосибирск

В. В Остапенко

Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук

Email: ostigil@mail.ru
Новосибирск

Список литературы

  1. Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики // Матем. сб. 1959. Т. 47. № 3. С. 271–306.
  2. Cockburn B., Shu C.W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems // J. Sci. Comput. 2001. V. 16. № 3. P. 173–261.
  3. Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: Физматлит, 2001.
  4. LeVeque R.J. Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press, 2002.
  5. Toro E.F. Riemann solvers and numerical methods for fluid dynamics: A practical introduction. Berlin: SpringerVerlag, 2009.
  6. Головизнин В.М., Зайцев М.А., Карабасов С.А., Короткин И.А. Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов. М.: Изд. МГУ, 2013.
  7. Shu C.W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes // Acta Numer. 2020. V. 29. P. 701–762.
  8. Van Leer B. Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method // J. Comput. Phys. 1979. V. 32. № 1. P. 101–136.
  9. Harten A. High resolution schemes for hyperbolic conservation laws // J. Comput. Phys. 1983. V. 49. P. 357–393.
  10. Nessyahu H., Tadmor E. Non-oscillatory central differencing for hyperbolic conservation laws // J. Comput. Phys. 1990. V. 87. N. 2. P. 408–463.
  11. Liu X.D., Osher T., Chan T. Weighted essentially non-oscillatory schemes // J. Comput. Phys. 1994. V. 115. N. 1. P. 200–212.
  12. Karabasov S.A., Goloviznin V.M. Compact accurately boundary-adjusting high-resolution technique for fluid dynamics // J. Comput. Phys. 2009. V. 228. P. 7426–7451.
  13. Yang H. Convergence of Godunov type schemes // Appl. Math. Letters. 1996. V. 9. P. 63–67.
  14. Bell P., Colella P., Trangenstein J. Higher order Godunov methods for general systems of hyperbolic conservation laws // J. Comput. Phys. 1989. V. 82. P. 362–397.
  15. Saurel R., Larini M., Loraud J.C. Exact and approximate Riemann solvers for real gases // J. Comput. Phys. 1994. V. 112. P. 126–137.
  16. Wang B., Glaz H. Second order Godunov-like schemes for gas dynamics with a nonconvex equation of state // 14th Computational Fluid Dynamics Conference AIAA Report AIAA-99-3256. 1999.
  17. Kurganov A., Petrova G., Popov B. Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws // SIAM J. Scient. Comp. 2007. V. 29. P. 2381–2401.
  18. Qiu J.M., Shu C.W. Convergence of high order finite volume weighted essentially non-oscillatory scheme and discontinuous Galerkin method for nonconvex conservation laws // SIAM J. Scient. Comp. 2008. V. 31. P. 584–607.
  19. Cai X., Qiu J., Qiu J. Finite volume HWENO schemes for nonconvex conservation laws // SIAM J. Scient. Comp. 2017. V. 75. P. 65–82.
  20. Остапенко В.В., Черевко А.А. Применение схемы КАБАРЕ для расчета разрывных решений скалярного закона сохранения с невыпуклым потоком // Докл. АН. 2017. Т. 476. № 5. С. 518–522.
  21. Gologush T.S., Cherevko A.A., Ostapenko V.V. Comparison of the WENO and CABARET schemes at calculation of the scalar conservation law with a nonconvex flux // AIP Conference Proc. 2020. V. 2293. № 370006. P. 1–4.
  22. Jiang G.S., Shu C.W. Efficient implementation of weighted ENO schemes // J. Comput. Phys. 1996. V. 126. P. 202–228.
  23. S. Gottlieb, D. Ketcheson and C.-W. Shu Strong stability preserving Runge-Kutta and multistep time discretizations. World Scientific Publishing Co. Pte. Ltd, 2011.
  24. Ентов В.М., Зазовский А.Ф. Гидродинамика процессов повышения нефтеотдачи. М.: Недра, 1989.
  25. Wang B.S., Don W.S., Kurganov A., Liu Y. Fifth-order A-WENO schemes based on the adaptive diffusion centralupwind Rankine-Hugoniot fluxes // Commun. Appl. Math. Comput. 2023. V. 5. P. 295–314.
  26. Ентов В.М., Хавкин А.Я., Чен-Син Э. Расчеты процессов вытеснения нефти раствором активной примеси // Труды III всесоюзного семинара: Численное решение задач фильтрации многофазной несжимаемой жидкости. 1977. C. 87–96.
  27. Тимофеева Т.С., Алексеева А.Г. Неизотермическое вытеснение нефти раствором активной примеси // Матем. заметки СВФУ. 2010. Т. 17. № 2. С. 170–176.
  28. Harten A., Osher S. Uniformly high-order accurate nonoscillatory schemes // SIAM J. Numer. Anal. 1987. V. 24. N. 2 P. 279–309.
  29. Lax P., Wendroff B. Systems of conservation laws // Commun. Pure Appl. Math. 1960. V. 13. P. 217–237.
  30. Chu S., Kovyrkina O.A., Kurganov A., Ostapenko V.V. Experimental convergence rate study for three shock-capturing schemes and development of highly accurate combined schemes // Numer. Meth. Part. Diff. Eq. 2023. V. 5. P. 1–30.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024