On Critical Exponents for Weak Solutions of the Cauchy Problem for a (2 + 1)-Dimensional Nonlinear Composite-Type Equation with Gradient Nonlinearity

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The Cauchy problem for a model nonlinear equation with gradient nonlinearity is considered. We prove the existence of two critical exponents, and, such that this problem has no local-in-time weak (in some sense) solution for , while such a solution exists for , but, for , there is no global-in-time weak solution.

Авторлар туралы

M. Korpusov

Faculty of Physics, Lomonosov Moscow State University

Email: korpusov@gmail.com
119992, Moscow, Russia

A. Matveeva

Faculty of Physics, Lomonosov Moscow State University; National Research Nuclear University “MEPhI”

Хат алмасуға жауапты Автор.
Email: matveeva2778@yandex.ru
119992, Moscow, Russia; 115409, Moscow, Russia

Әдебиет тізімі

  1. Багдоев Г.А., Ерофеев В.И., Шекоян А.В. Линейные и нелинейные волны в диспергирующих средах. М.: Физматлит, 2009. 320 с.
  2. Свиридюк Г.А. К общей теории полугрупп операторов // Успехи матем. наук. 1994. Т. 49. № 4. P. 47–74.
  3. Загребина С.А. Начально-конечная задача для уравнений соболевского типа с сильно (L,p)-радиальным оператором // Матем. заметки ЯГУ. 2012. Т. 19. № 2. С. 39–48.
  4. Zamyshlyaeva A.A., Sviridyuk G.A. Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order // Вестн. Южно-Ур. ун-та. Сер. Матем. мех. физ. 2016. Т. 8. № 4. С. 5–16.
  5. Капитонов Б.В. Теория потенциала для уравнения малых колебаний вращающейся жидкости // Матем. сб. 1979. Т. 109(151). № 4(8). С. 607–628.
  6. Габов С.А., Свешников А.Г. Линейные задачи теории нестационарных внутренних волн. М.: Наука, 1990. С. 344.
  7. Габов С.А. Новые задачи математической теории волн. М.: Физматлит, 1998. С. 448.
  8. Плетнер Ю.Д. Фундаментальные решения операторов типа Соболева и некоторые начально-краевые задачи // Ж. вычисл. матем. и матем. физ. 1992. Т. 32. № 12. С. 1885–1899.
  9. Похожаев С.И., Митидиери Э. Априорные оценки и отсутствие решений нелинейных уравнений и неравенств в частных производных // Тр. МИАН. 2001. Т. 234. С. 3–383.
  10. Galakhov E.I. Some nonexistence results for quasilinear elliptic problems // J. Math. Anal. Appl. 2000. V. 252. № 1. P. 256–277.
  11. Галахов Е.И., Салиева О.А. Об отсутствии неотрицательных монотонных решений для некоторых коэрцитивных неравенств в полупространстве // Современ. матем. Фундамент. направл. 2017. Т. 63. № 4. С. 573–585.
  12. Корпусов М.О. Критические показатели мгновенного разрушения или локальной разрешимости нелинейных уравнений соболевского типа // Изв. РАН. Сер. матем. 2015. Т. 79. № 5. С. 103–162.
  13. Корпусов М.О. О разрушении решений нелинейных уравнений типа уравнения Хохлова–Заболотской // Теор. и матем. физ. 2018. Т. 194. № 3. С. 403–417.
  14. Korpusov M.O., Ovchinnikov A.V., Panin A.A. Instantaneous blow-up versus local solvability of solutions to the Cauchy problem for the equation of a semiconductor in a magnetic field // Math. Meth. Appl. Sci. 2018. V. 41. № 17. P. 8070–8099.
  15. Корпусов М.О., Панин А.А. Мгновенное разрушение versus локальная разрешимость задачи Коши для двумерного уравнения полупроводника с тепловым разогревом // Изв. РАН. Сер. матем. 2019. Т. 83. № 6. С. 1174–1200.
  16. Корпусов М.О., Матвеева А.К. О критических показателях для слабых решений задачи Коши для одного нелинейного уравнения составного типа // Изв. РАН. Сер. матем. 2021. Т. 85. № 4. С. 96–136.
  17. Владимиров В.С. Уравнения математической физики, М.: Наука, 1988. С. 512.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© М.О. Корпусов, А.К. Матвеева, 2023