Контроль активности и селективности Pd-катализаторов гидрирования алкинов путем модификации структуры носителей различной природы гетероатомами N, S и P (обзор)
- 作者: Макеева Д.А.1, Ненашева М.В.1, Баженова M.А.1, Куликов Л.А.1
-
隶属关系:
- Московский государственный университет им. М. В. Ломоносова
- 期: 卷 97, 编号 11-12 (2024)
- 页面: 680-723
- 栏目: Articles
- URL: https://ter-arkhiv.ru/0044-4618/article/view/681618
- DOI: https://doi.org/10.31857/S004446182411001X
- EDN: https://elibrary.ru/EJVGWU
- ID: 681618
如何引用文章
详细
В обзоре рассмотрены актуальные достижения в области создания модифицированных гетероатомами N, S и P носителей для палладиевых катализаторов селективного гидрирования алкинов до олефинов. Описан механизм процесса, рассмотрены основные факторы, определяющие активность и селективность Pd-катализаторов, особое внимание уделено морфологическим характеристикам наночастиц и модификаторам активной фазы. Проведен сравнительный анализ активности и селективности Pd-катализаторов на основе ряда материалов (силикатных, углеродных, металл-органических каркасов и органических полимеров), модифицированных гетероатомами N, S и P либо в процессе синтеза (премодификация), либо путем функционализации уже готового материала (постмодификация), либо комбинацией двух стратегий. Рассмотрена связь строения носителя со свойствами наночастиц палладия, внедренных в его структуру, а также активностью, стабильностью и селективностью катализаторов. Внедрение гетероатомов N, P и S является эффективным инструментом, способствующим стабилизации частиц активной фазы. Использование модифицированных материалов в качестве носителей, как правило, снижает активность Pd-катализаторов на их основе, однако в то же время способствует значительному росту селективности по целевым олефинам. В случае силикатных и углеродных материалов наиболее оптимальными и используемыми являются подходы постмодификации, в то время как в случае металл-органических каркасов и органических полимеров — премодификации.
全文:

作者简介
Д. Макеева
Московский государственный университет им. М. В. Ломоносова
编辑信件的主要联系方式.
Email: daria.makeeva@chemistry.msu.ru
ORCID iD: 0000-0001-7750-7457
химический факультет, к.х.н.
119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3М. Ненашева
Московский государственный университет им. М. В. Ломоносова
Email: daria.makeeva@chemistry.msu.ru
ORCID iD: 0000-0002-0770-8277
химический факультет, к.х.н.
俄罗斯联邦, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3M. Баженова
Московский государственный университет им. М. В. Ломоносова
Email: daria.makeeva@chemistry.msu.ru
ORCID iD: 0000-0002-2157-0227
химический факультет
俄罗斯联邦, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3Л. Куликов
Московский государственный университет им. М. В. Ломоносова
Email: daria.makeeva@chemistry.msu.ru
ORCID iD: 0000-0002-7665-5404
химический факультет, к.х.н.
俄罗斯联邦, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3参考
- Николаев С. А., Занавескин Л. Н., Смирновa В. В., Аверьянов В. А., Занавескин К. Л. Каталитическое гидрирование примесей алкинов и алкадиенов в олефинах. Практический и теоретический аспекты // Успехи химии. 2009. Т. 78. № 3. С. 248–265. https://doi.org/10.1070/RC2009v078n03ABEH003893
- McCue A. J., Anderson J. A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts // Front. Chem. Sci. Eng. 2015. V. 9. N 2. P. 142–153. https://doi.org/10.1007/s11705-015-1516-4
- Yang Z., Han J., Fan Q., Jia H., Zhang F. Catalytic hydrogenation of a pyrolysis gasoline model feed over supported NiRu bimetallic catalysts with Ru content from 0.01 wt% to 0.1 wt% // Appl. Catal. A: General. 2018. V. 568. P. 183–190. https://doi.org/10.1016/j.apcata.2018.09.021
- Cheng Y. M., Chang J. R., Wu J. C. Kinetic study of pyrolysis gasoline hydrogenation over supported palladium catalyst // Appl. Catal. 1986. V. 24. N 1–2. P. 273–285. https://doi.org/10.1016/S0166-9834(00)81275-0
- Wilhite B. A., McCready M. J., Varma A. Kinetics of phenylacetylene hydrogenation over Pt/γ-Al2O3 catalyst // Ind. Eng. Chem. Res. 2002. V. 41. N 14. P. 3345–3350. https://doi.org/10.1021/ie0201112
- Golubina E. V., Lokteva E. S., Erokhin A. V., Veligzhanin A. A., Zubavichus Y. V., Likholobov V. A., Lunin V. V. The role of metal–support interaction in catalytic activity of nanodiamond-supported nickel in selective phenylacetylene hydrogenation // J. Catal. 2016. V. 344. P. 90–99. https://doi.org/10.1016/j.jcat.2016.08.017
- Zaitseva N. A., Molchanov V. V., Chesnokov V. V., Buyanov R. A., Zaikovskii V. I. Effect of the nature of coke-forming species on the crystallographic characteristics and catalytic properties of metal-filamentous carbon catalysts in the selective hydrogenation of 1,3-butadiene // Kinet. Catal. 2003. V. 44. N 1. P. 129–134. https://doi.org/10.1023/A:1022537121514
- Shi X., Lin Y., Huang L., Sun Z., Yang Y., Zhou X., Vovk E., Liu X., Huang X., Sun M., Wei S., Lu J. Copper catalysts in semihydrogenation of acetylene: From single atoms to nanoparticles // ACS Catal. 2020. V. 10. N 5. P. 3495–3504. https://doi.org/10.1021/acscatal.9b05321
- Chanerika R., Shozi M. L., Friedrich H. B. Synthesis and characterization of Ag/Al2O3 catalysts for the hydrogenation of 1-octyne and the preferential hydrogenation of 1-octyne vs 1-octene // ACS Omega. 2022. V. 7. N 5. P. 4026–4040. https://doi.org/10.1021/acsomega.1c05231
- Zhao X., Chang Y., Chen W. J., Wu Q., Pan X., Chen K., Weng B. Recent progress in Pd-based nanocatalysts for selective hydrogenation // ACS Omega. 2022. V. 7. N 1. P. 17–31. https://doi.org/10.1021/acsomega.1c06244
- Carturan G., Cocco G., Facchin G., Navazio G. Phenylacetylene hydrogenation with Pd, Pt and Pd-Pt alloy catalysts dispersed on amorphous supports: Effect of Pt/Pd ratio on catalytic activity and selectivity // J. Mol. Catal. 1984. V. 26. N 3. P. 375–384. https://doi.org/10.1016/0304-5102(84)85111-1
- Anderson J. A., Mellor J., Wells R. P. K. Pd catalysed hexyne hydrogenation modified by Bi and by Pb // J. Catal. 2009. V. 261. N 2. P. 208–216. https://doi.org/10.1016/J.JCAT.2008.11.023
- Zhang L., Zhou M., Wang A., Zhang T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms // Chem. Rev. 2020. V. 120. N 2. P. 683–733. https://doi.org/10.1021/acs.chemrev.9b00230
- Kruppe C. M., Krooswyk J. D., Trenary M. Selective hydrogenation of acetylene to ethylene in the presence of a carbonaceous surface layer on a Pd/Cu(III) single-atom alloy // ACS Catal. 2017. V. 7. N 12. P. 8042–8049. https://doi.org/10.1021/acscatal.7b02862
- Riyapan S., Zhang Y., Wongkaew A., Pongthawornsakun B., Monnier J. R., Panpranot J. Preparation of improved Ag-Pd/TiO2 catalysts using the combined strong electrostatic adsorption and electroless deposition methods for the selective hydrogenation of acetylene // Catal. Sci. Technol. 2016. V. 6. N 14. P. 5608–5617. https://doi.org/10.1039/c6cy00121a
- Yang L., Guo Y., Long J., Xia L., Li D., Xiao J., Liu H. PdZn alloy nanoparticles encapsulated within a few layers of graphene for efficient semi-hydrogenation of acetylene // Chem. Commun. 2019. V. 55. N 97. P. 14693–14696. https://doi.org/10.1039/c9cc06442g
- Insorn P., Kitiyanan B. Selective hydrogenation of mixed C4 containing high vinyl acetylene by Mn-Pd, Ni-Pd and Ag-Pd on Al2O3 catalysts // Catal. Today. 2015. V. 256. P. 223–230. https://doi.org/10.1016/j.cattod.2015.01.042
- Huang L., Subramanian R., Wang J., Kwon Oh J., Ye Z. Ligand screening for palladium nanocatalysts towards selective hydrogenation of alkynes // Mol. Catal. 2020. V. 488. P. 110923. https://doi.org/10.1016/j.mcat.2020.110923
- Boitiaux J. P., Cosyns J., Martino G. Additives effects in the selective hydrogenation of unsaturated hydrocarbons // Stud. Surf. Sci. Catal. 1982. V. 11. P. 355–368. https://doi.org/10.1016/S0167-2991(09)61408-7
- Crespo-Quesada M., Cárdenas-Lizana F., Dessimoz A.-L., Kiwi-Minsker L. Modern trends in catalyst and process design for alkyne hydrogenations // ACS Catal. 2012. V. 2. N 8. P. 1773–1786. https://doi.org/10.1021/cs300284r
- Su J., Chen J.-S. Synthetic porous materials applied in hydrogenation reactions // Micropor. Mesopor. Mater. 2017. V. 237. P. 246–259. https://doi.org/10.1016/j.micromeso.2016.09.039
- Makeeva D., Kulikov L., Zolotukhina A., Maximov A., Karakhanov E. Functionalization strategy influences the porosity of amino-containing porous aromatic frameworks and the hydrogenation activity of palladium catalysts synthesized on their basis // Mol. Catal. 2022. V. 517. P. 112012. https://doi.org/10.1016/j.mcat.2021.112012
- Molnár Á., Sárkány A., Varga M. Hydrogenation of carbon-carbon multiple bonds: Chemo-, regio- and stereo-selectivity // J. Mol. Catal. A: Chemical. 2001. V. 173. N 1–2. P. 185–221. https://doi.org/10.1016/S1381-1169(01)00150-9
- Mei D., Sheth P. A., Neurock M., Smith C. M. First-principles-based kinetic Monte Carlo simulation of the selective hydrogenation of acetylene over Pd(III) // J. Catal. 2006. V. 242. N 1. P. 1–15. https://doi.org/10.1016/J.JCAT.2006.05.009
- Guo X. C., Madix R. J. Selective hydrogenation and H-D exchange of unsaturated hydrocarbons on Pd(100)-P(1×1)-H(D) // J. Catal. 1995. V. 155. N 2. P. 336–344. https://doi.org/10.1006/JCAT.1995.1215
- Mastalir Á., Király Z., Berger F. Comparative study of size-quantized Pd-montmorillonite catalysts in liquid-phase semihydrogenations of alkynes // Appl. Catal. A: General. 2004. V. 269. N 1–2. P. 161–168. https://doi.org/10.1016/j.apcata.2004.04.012
- Ryndin Y. A., Nosova L. V., Boronin A. I., Chuvilin A. L. Effect of dispersion of supported palladium on its electronic and catalytic properties in the hydrogenation of vinylacetylene // Appl. Catal. 1988. V. 42. N 1. P. 131–141. https://doi.org/10.1016/S0166-9834(00)80081-0
- Semagina N., Renken A., Kiwi-Minsker L. Palladium nanoparticle size effect in 1-hexyne selective hydrogenation // J. Phys. Chem. C. 2007. V. 111. N 37. P. 13933–13937. https://doi.org/10.1021/JP073944K
- Stakheev A. Y., Markov P. V., Taranenko A. S., Bragina G. O., Baeva G. N., Tkachenko O. P., Mashkovskii I. S., Kashin A. S. Size effect of Pd nanoparticles in the selective liquid-phase hydrogenation of diphenylacetylene // Kinet. Catal. 2015. V. 56. N 6. P. 733–740. https://doi.org/10.1134/S0023158415060130
- Mao S., Wang Z., Luo Q., Lu B., Wang Y. Geometric and electronic effects in hydrogenation reactions // ACS Catal. 2023. V. 13. N 2. P. 974–1019. https://doi.org/10.1021/acscatal.2c05141
- Karakhanov E. A., Maximov A. L., Zolotukhina A. V. Selective semi-hydrogenation of phenyl acetylene by Pd nanocatalysts encapsulated into dendrimer networks // Mol. Catal. 2019. V. 469. P. 98–110. https://doi.org/10.1016/j.mcat.2019.03.005
- Telkar M. M., Rode C. V., Chaudhari R. V., Joshi S. S., Nalawade A. M. Shape-controlled preparation and catalytic activity of metal nanoparticles for hydrogenation of 2-butyne-1,4-diol and styrene oxide // Appl. Catal. A: General. 2004. V. 273. N 1–2. P. 11–19. https://doi.org/10.1016/J.APCATA.2004.05.056
- Semagina N., Kiwi-Minsker L. Palladium nanohexagons and nanospheres in selective alkyne hydrogenation // Catal. Lett. 2009. V. 127. N 3–4. P. 334–338. https://doi.org/10.1007/s10562-008-9684-1
- Yang B., Burch R., Hardacre C., Headdock G., Hu P. Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: A density functional theory study // J. Catal. 2013. V. 305. P. 264–276. https://doi.org/10.1016/j.jcat.2013.05.027
- Shamsiev R. S., Finkelshtein E. I. Adsorption of phenylacetylene and styrene on palladium surface: A DFT study // J. Mol. Model. 2018. V. 24. N 7. P. 143. https://doi.org/10.1007/s00894-018-3685-9
- Huang L., Hu K., Ye G., Ye Z. Highly selective semi-hydrogenation of alkynes with a Pd nanocatalyst modified with sulfide-based solid-phase ligands // Mol. Catal. 2021. V. 506. P. 111535. https://doi.org/10.1016/j.mcat.2021.111535
- Crespo-Quesada M., Dykeman R. R., Laurenczy G., Dyson P. J., Kiwi-Minsker L. Supported nitrogen-modified Pd nanoparticles for the selective hydrogenation of 1-hexyne // J. Catal. 2011. V. 279. N 1. P. 66–74. https://doi.org/10.1016/j.jcat.2011.01.003
- Klasovsky F., Claus P., Wolf D. Influence of preparation parameters on the performance of colloid-derived oxidic palladium catalysts for selective hydrogenation of C-C triple bonds // Top. Catal. 2009. V. 52. N 4. P. 412–423. https://doi.org/10.1007/s11244-008-9173-1
- Karousis N., Tsotsou G.-E., Evangelista F., Rudolf P., Ragoussis N., Tagmatarchis N. Carbon nanotubes decorated with palladium nanoparticles: Synthesis, characterization, and catalytic activity // J. Phys. Chem. C. 2008. V. 112. N 35. P. 13463–13469. https://doi.org/10.1021/jp802920k
- Schwab F., Weidler N., Lucas M., Claus P. Highly cis-selective and lead-free hydrogenation of 2-hexyne by a supported Pd catalyst with an ionic-liquid layer // Chem. Commun. 2014. V. 50. N 72. P. 10406–10408. https://doi.org/10.1039/C4CC04183F
- Li R., Yue Y., Chen Z., Chen X., Wang S., Jiang Z., Wang B., Xu Q., Han D., Zhao J. Selective hydrogenation of acetylene over Pd-Sn catalyst: Identification of Pd2Sn intermetallic alloy and crystal plane-dependent performance // Appl. Catal. B: Environmental. 2020. V. 279. P. 119348. https://doi.org/10.1016/j.apcatb.2020.119348
- Chung Y. M., Rhee H. K. Pt-Pd bimetallic nanoparticles encapsulated in dendrimer nanoreactor // Catal. Lett. 2003. V. 85. N 3–4. P. 159–164. https://doi.org/10.1023/A:1022181327349
- Liu J., Uhlman M. B., Montemore M. M., Trimpalis A., Giannakakis G., Shan J., Cao S., Hannagan R. T., Sykes E. C. H., Flytzani-Stephanopoulos M. Integrated catalysis-surface science-theory approach to understand selectivity in the hydrogenation of 1-hexyne to 1-hexene on PdAu single-atom alloy catalysts // ACS Catal. 2019. V. 9. N 9. P. 8757–8765. https://doi.org/10.1021/acscatal.9b00491
- Lindlar H. Ein neuer katalysator für selektive hydrierungen // Helv. Chim. Acta. 1952. V. 35. N 2. P. 446–450. https://doi.org/10.1002/hlca.19520350205
- García-Mota M., Gómez-Díaz J., Novell-Leruth G., Vargas-Fuentes C., Bellarosa L., Bridier B., Pérez-Ramírez J., López N. A density functional theory study of the «mythic» Lindlar hydrogenation catalyst // Theor. Chem. Acc. 2011. V. 128. N 4. P. 663–673. https://doi.org/10.1007/s00214-010-0800-0
- Stakheev A. Y., Kustov L. Effects of the support on the morphology and electronic properties of supported metal clusters: Modern concepts and progress in 1990s // Appl. Catal. A: General. 1999. V. 188. N 1–2. P. 3–35. https://doi.org/10.1016/S0926-860X(99)00232-X
- Verde-Sesto E., Pintado-Sierra M., Corma A., Maya E. M., de la Campa J. G., Iglesias M., Sánchez F. First pre-functionalised polymeric aromatic framework from mononitrotetrakis(iodophenyl)methane and its applications // Chem. — A Eur. J. 2014. V. 20. N 17. P. 5111–5120. https://doi.org/10.1002/chem.201304163
- Barin G., Peterson G. W., Crocellà V., Xu J., Colwell K. A., Nandy A., Reimer J. A., Bordiga S., Long J. R. Highly effective ammonia removal in a series of Brønsted acidic porous polymers: Investigation of chemical and structural variations // Chem. Sci. 2017. V. 8. N 6. P. 4399–4409. https://doi.org/10.1039/c6sc05079d
- Xu H.-S., Ding S.-Y., An W.-K., Wu H., Wang W. Constructing crystalline covalent organic frameworks from chiral building blocks // J. Am. Chem. Soc. 2016. V. 138. N 36. P. 11489–11492. https://doi.org/10.1021/jacs.6b07516
- Zhang Y., Riduan S. N. Functional porous organic polymers for heterogeneous catalysis // Chem. Soc. Rev. 2012. V. 41. N 6. P. 2083–2094. https://doi.org/10.1039/c1cs15227k
- Kim J. H., Kang D. W., Yun H., Kang M., Singh N., Kim J. S., Hong C. S. Post-synthetic modifications in porous organic polymers for biomedical and related applications // Chem. Soc. Rev. 2022. V. 51. N 1. P. 43–56. https://doi.org/10.1039/d1cs00804h
- Segura J. L., Royuela S., Mar Ramos M. Post-synthetic modification of covalent organic frameworks // Chem. Soc. Rev. 2019. V. 48. N 14. P. 3903–3945. https://doi.org/10.1039/c8cs00978c
- Kalaj M., Cohen S. M. Postsynthetic modification: An enabling technology for the advancement of metal–organic frameworks // ACS Cent. Sci. 2020. V. 6. N 7. P. 1046–1057. https://doi.org/10.1021/acscentsci.0c00690
- Yusran Y., Guan X., Li H., Fang Q., Qiu S. Postsynthetic functionalization of covalent organic frameworks // Natl. Sci. Rev. 2020. V. 7. N 1. P. 170–190. https://doi.org/10.1093/nsr/nwz122
- Макеева Д. А., Куликов Л. А., Оськина Е. Д., Уваров О. В., Максимов А. Л., Караханов Э. А. Палладиевые катализаторы на основе азотсодержащих пористых ароматических каркасов для гидрирования непредельных соединений // Нефтехимия. 2022. Т. 62. № 6. С. 907–920. https://doi.org/10.31857/S0028242122060132
- Николаев С. А., Кротова И. Н. Парциальное гидрирование фенилацетилена на золото- и палладийсодержащих катализаторах // Нефтехимия. 2013. Т. 53. № 6. С. 442–448. https://doi.org/10.7868/S0028242113050079
- Weerachawanasak P., Mekasuwandumrong O., Arai M., Fujita S. I., Praserthdam P., Panpranot J. Effect of strong metal-support interaction on the catalytic performance of Pd/TiO2 in the liquid-phase semihydrogenation of phenylacetylene // J. Catal. 2009. V. 262. N 2. P. 199–205. https://doi.org/10.1016/j.jcat.2008.12.011
- Jackson S. D., Hamilton C. A., Kelly G. J., De Bruin D. The hydrogenation of C-5 alkynes over palladium catalysts // React. Kinet. Catal. Lett. 2001. V. 73. N 1. P. 77–82. https://doi.org/10.1023/A:1013924921651
- Jackson S. D., Casey N. J. Hydrogenation of propyne over palladium catalysts // J. Chem. Soc. Faraday Trans. 1995. V. 91. N 18. P. 3269–3274. https://doi.org/10.1039/ft9959103269
- Duca D., Frusteri F., Parmaliana A., Deganello G. Selective hydrogenation of acetylene in ethylene feedstocks on Pd catalysts // Appl. Catal. A: General. 1996. V. 146. N 2. P. 269–284. https://doi.org/10.1016/S0926-860X(96)00145-7
- Panpranot J., Phandinthong K., Sirikajorn T., Arai M., Praserthdam P. Impact of palladium silicide formation on the catalytic properties of Pd/SiO2 catalysts in liquid-phase semihydrogenation of phenylacetylene // J. Mol. Catal. A: Chemical. 2007. V. 261. N 1. P. 29–35. https://doi.org/10.1016/j.molcata.2006.07.053
- Mastalir Á., Király Z., Szöllosi G., Bartók M. Preparation of organophilic Pd-montmorillonite, an efficient catalyst in alkyne semihydrogenation // J. Catal. 2000. V. 194. N 1. P. 146–152. https://doi.org/10.1006/JCAT.2000.2929
- Melnikov D., Reshetina M., Novikov A., Cherednichenko K., Stavitskaya A., Stytsenko V., Vinokurov V., Huang W., Glotov A. Strategies for palladium nanoparticles formation on halloysite nanotubes and their performance in acetylene semi-hydrogenation // Appl. Clay Sci. 2023. V. 232. P. 106763. https://doi.org/10.1016/J.CLAY.2022.106763
- Marín-Astorga N., Pecchi G., Pinnavaia T. J., Alvez-Manoli G., Reyes P. Mesostructured silicas as supports for palladium-catalyzed hydrogenation of phenyl acetylene and 1-phenyl-1-hexyne to alkenes // J. Mol. Catal. A: Chemical. 2006. V. 247. N 1–2. P. 145–152. https://doi.org/10.1016/j.molcata.2005.11.031
- Alvez-Manoli G., Pinnavaia T. J., Zhang Z., Lee D. K., Marín-Astorga K., Rodriguez P., Imbert F., Reyes P., Marín-Astorga N. Stereo-selective hydrogenation of 3-hexyne over low-loaded palladium catalysts supported on mesostructured materials // Appl. Catal. A: General. 2010. V. 387. N 1–2. P. 26–34. https://doi.org/10.1016/J.APCATA.2010.07.062
- Long W., Brunelli N. A., Didas S. A., Ping E. W., Jones C. W. Aminopolymer-silica composite-supported Pd catalysts for selective hydrogenation of alkynes // ACS Catal. 2013. V. 3. N 8. P. 1700–1708. https://doi.org/10.1021/cs3007395
- Sajiki H., Mori S., Ohkubo T., Ikawa T., Kume A., Maegawa T., Monguchi Y. Partial hydrogenation of alkynes tocis-olefins by using a novel Pd0-polyethyleneimine catalyst // Chem. — A Eur. J. 2008. V. 14. N 17. P. 5109–5111. https://doi.org/10.1002/chem.200800535
- Mori S., Ohkubo T., Ikawa T., Kume A., Maegawa T., Monguchi Y., Sajiki H. Pd(0)-polyethyleneimine complex as a partial hydrogenation catalyst of alkynes to alkenes // J. Mol. Catal. A: Chemical. 2009. V. 307. N 1–2. P. 77–87. https://doi.org/10.1016/j.molcata.2009.03.013
- Latypova A. R., Lebedev M. D., Rumyantsev E. V., Filippov D. V., Lefedova O. V., Bykov A. V., Doluda V. Y. Amino-modified silica as effective support of the palladium catalyst for 4-nitroaniline hydrogenation // Catalysts. 2020. V. 10. N 4. P. 22–25. https://doi.org/10.3390/catal10040375
- Rossi L. M., Nangoi I. M., Costa N. J. S. Ligand-assisted preparation of palladium supported nanoparticles: A step toward size control // Inorg. Chem. 2009. V. 48. N 11. P. 4640–4642. https://doi.org/10.1021/ic900440p
- Da Silva F. P., Fiorio J. L., Rossi L. M. Tuning the catalytic activity and selectivity of Pd nanoparticles using ligand-modified supports and surfaces // ACS Omega. 2017. V. 2. N 9. P. 6014–6022. https://doi.org/10.1021/acsomega.7b00836
- Karakhanov E., Maximov A., Kardasheva Y., Semernina V., Zolotukhina A., Ivanov A., Abbott G., Rosenberg E., Vinokurov V. Pd nanoparticles in dendrimers immobilized on silica-polyamine composites as catalysts for selective hydrogenation // ACS Appl. Mater. Interfaces. 2014. V. 6. N 11. P. 8807–8816. https://doi.org/10.1021/am501528a
- Dhiman M., Chalke B., Polshettiwar V. Efficient synthesis of monodisperse metal (Rh, Ru, Pd) nanoparticles supported on fibrous nanosilica (KCC-1) for catalysis // ACS Sustain. Chem. Eng. 2015. V. 3. N 12. P. 3224–3230. https://doi.org/10.1021/acssuschemeng.5b00812
- Huo J., Johnson R. L., Duan P., Pham H. N., Mendivelso-Perez D., Smith E. A., Datye A. K., Schmidt-Rohr K., Shanks B. H. Stability of Pd nanoparticles on carbon-coated supports under hydrothermal conditions // Catal. Sci. Technol. 2018. V. 8. N 4. P. 1151–1160. https://doi.org/10.1039/C7CY02098H
- Oliveira R. L., Kerstien J., Schomäcker R., Thomas A. Pd nanoparticles confined in mesoporous N-doped carbon silica supports: A synergistic effect between catalyst and support // Catal. Sci. Technol. 2020. V. 10. N 5. P. 1385–1394. https://doi.org/10.1039/c9cy01920k
- Li Z., Ren Q., Wang X., Chen W., Leng L., Zhang M., Horton J. H., Liu B., Xu Q., Wu W., Wang J. Highly active and stable palladium single-atom catalyst achieved by a thermal atomization strategy on an SBA-15 molecular sieve for semi-hydrogenation reactions // ACS Appl. Mater. Interfaces. 2021. V. 13. N 2. P. 2530–2537. https://doi.org/10.1021/acsami.0c17570
- Kuwahara Y., Kango H., Yamashita H. Pd nanoparticles and aminopolymers confined in hollow silica spheres as efficient and reusable heterogeneous catalysts for semihydrogenation of alkynes // ACS Catal. 2019. V. 9. N 3. P. 1993–2006. https://doi.org/10.1021/acscatal.8b04653
- Hu R., Wang L., Xu S., Lu Y., Zhou S. Silica nanospheres-encapsulated polymer ligands-bound Pd nanoparticles as highly efficient and selective catalysts for semi-hydrogenations of alkynes // Micropor. Mesopor. Mater. 2024. V. 377. June. P. 113213. https://doi.org/10.1016/j.micromeso.2024.113213
- Karakhanov E., Maximov A., Zolotukhina A., Mamadli A., Vutolkina A., Ivanov A. Dendrimer-stabilized Ru nanoparticles immobilized in organo-silica materials for hydrogenation of phenols // Catalysts. 2017. V. 7. N 3. P. 86. https://doi.org/10.3390/catal7030086
- Karakanov E. A., Zolotukhina A. V., Ivanov A. O., Maximov A. L. Dendrimer-encapsulated Pd nanoparticles, immobilized in silica pores, as catalysts for selective hydrogenation of unsaturated compounds // ChemistryOpen. 2019. V. 8. N 3. P. 358–381. https://doi.org/10.1002/open.201800280
- Karakhanov E. A., Maximov A. L., Zakharyan E. M., Zolotukhina A. V., Ivanov A. O. Palladium nanoparticles on dendrimer-containing supports as catalysts for hydrogenation of unsaturated hydrocarbons // Mol. Catal. 2017. V. 440. N 5. P. 107–119. https://doi.org/10.1016/j.mcat.2017.07.011
- Boitiaux J. P., Cosyns J., Vasudevan S. Hydrogenation of highly unsaturated hydrocarbons over highly dispersed Pd catalyst // Appl. Catal. 1985. V. 15. N 2. P. 317–326. https://doi.org/10.1016/S0166-9834(00)81845-X
- Zhu J., Holmen A., Chen D. Carbon nanomaterials in catalysis: Proton affinity, chemical and electronic properties, and their catalytic consequences // ChemCatChem. 2013. V. 5. N 2. P. 378–401. https://doi.org/10.1002/cctc.201200471
- Sharma P., Krishnapriya R., Sharma P. R., Sharma R. K. Recent advances in synthesis of metal-carbon nanocomposites and their application in catalytic hydrogenation reactions // ACS Symp. Ser. 2020. V. 1359. P. 403–458. https://doi.org/10.1021/bk-2020-1359.ch014
- Georgakilas V., Tiwari J. N., Kemp K. C., Perman J. A., Bourlinos A. B., Kim K. S., Zboril R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications // Chem. Rev. 2016. V. 116. N 9. P. 5464–5519. https://doi.org/10.1021/acs.chemrev.5b00620
- Yu R., Liu Q., Tan K. L., Xu G. Q., Ng S. C., Chan H. S. O., Hor T. S. A. Preparation, characterisation and catalytic hydrogenation properties of palladium supported on C60 // J. Chem. Soc. — Faraday Trans. 1997. V. 93. N 12. P. 2207–2210. https://doi.org/10.1039/a700804j
- Wang A., Li J., Zhang T. Heterogeneous single-atom catalysis // Nat. Rev. Chem. 2018. V. 2. N 6. P. 65–81. https://doi.org/10.1038/s41570-018-0010-1
- Burueva D. B., Sviyazov S. V., Huang F., Prosvirin I. P., Bukhtiyarov A. V., Bukhtiyarov V. I., Liu H., Koptyug I. V. Pd on nanodiamond/graphene in hydrogenation of propyne with parahydrogen // J. Phys. Chem. C. 2021. V. 125. N 49. P. 27221–27229. https://doi.org/10.1021/acs.jpcc.1c08424
- Huang F., Jia Z., Diao J., Yuan H., Su D., Liu H. Palladium nanoclusters immobilized on defective nanodiamond-graphene core-shell supports for semihydrogenation of phenylacetylene // J. Energy Chem. 2019. V. 33. P. 31–36. https://doi.org/10.1016/j.jechem.2018.08.006
- Guldi D.M., Martín N. Carbon nanotubes and related structures: Synthesis, characterization, functionalization, and applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. P. 135–198. https://doi.org/10.1002/9783527629930
- Dobrovolná Z., Kačer P., Červený L. Competitive hydrogenation in alkene–alkyne–diene systems with palladium and platinum catalysts // J. Mol. Catal. A: Chemical. 1998. V. 130. N 3. P. 279–284. https://doi.org/10.1016/S1381-1169(97)00219-7
- Chan C. W. A., Xie Y., Cailuo N., Yu K. M. K., Cookson J., Bishop P., Tsang S. C. New environmentally friendly catalysts containing Pd-interstitial carbon made from Pd-glucose precursors for ultraselective hydrogenations in the liquid phase // Chem. Commun. 2011. V. 47. N 28. P. 7971–7973. https://doi.org/10.1039/c1cc12681d
- Iijima S. Helical microtubules of graphitic carbon // Nature. 1991. V. 354. N 6348. P. 56–58. https://doi.org/10.1038/354056a0
- Rodriguez N. M., Kim M. S., Baker R. T. K. Carbon nanofibers: A unique catalyst support medium // J. Phys. Chem. 1994. V. 98. N 50. P. 13108–13111. https://doi.org/10.1021/j100101a003
- Domínguez-Domínguez S., Berenguer-Murcia Á., Pradhan B. K., Linares-Solano Á., Cazorla-Amorós D. Semihydrogenation of phenylacetylene catalyzed by palladium nanoparticles supported on carbon materials // J. Phys. Chem. C. 2008. V. 112. N 10. P. 3827–3834. https://doi.org/10.1021/jp710693u
- Jung A., Jess A., Schubert T., Schütz W. Performance of carbon nanomaterial (nanotubes and nanofibres) supported platinum and palladium catalysts for the hydrogenation of cinnamaldehyde and of 1-octyne // Appl. Catal. A: General. 2009. V. 362. N 1–2. P. 95–105. https://doi.org/10.1016/j.apcata.2009.04.026
- Yan H., Cheng H., Yi H., Lin Y., Yao T., Wang C., Li J., Wei S., Lu J. Single-atom Pd 1 /graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene // J. Am. Chem. Soc. 2015. V. 137. N 33. P. 10484–10487. https://doi.org/10.1021/jacs.5b06485
- Yan H., Lv H., Yi H., Liu W., Xia Y., Huang X., Huang W., Wei S., Wu X., Lu J. Understanding the underlying mechanism of improved selectivity in pd1 single-atom catalyzed hydrogenation reaction // J. Catal. 2018. V. 366. P. 70–79. https://doi.org/10.1016/j.jcat.2018.07.033
- Li F., Zhang G., Song Y. Fabrication and evaluation of multi-walled carbon nanotubes supported novel catalyst for select conversion of cellulose to 5-hydroxymethylfurfural // Energy Technol. 2018. V. 6. N 9. P. 1633–1641. https://doi.org/10.1002/ente.201700800
- Wan Y., Yang H., Zhao D. «Host-guest» chemistry in the synthesis of ordered nonsiliceous mesoporous materials // Acc. Chem. Res. 2006. V. 39. N 7. P. 423–432. https://doi.org/10.1021/ar050091a
- Xing R., Liu N., Liu Y., Wu H., Jiang Y., Chen L., He M., Wu P. Novel solid acid catalysts: Sulfonic acid group-functionalized mesostructured polymers // Adv. Funct. Mater. 2007. V. 17. N 14. P. 2455–2461. https://doi.org/10.1002/adfm.200600784
- Xing R., Liu Y., Wu H., Li X., He M., Wu P. Preparation of active and robust palladium nanoparticle catalysts stabilized by diamine-functionalized mesoporous polymers // Chem. Commun. 2008. V. 47. P. 6297–6299. https://doi.org/10.1039/b815186e
- Muylaert I., Verberckmoes A., Spileers J., Demuynck A., Peng L., De Clippel F., Sels B., Van Der Voort P. Synthesis of sulphonated mesoporous phenolic resins and their application in esterification and asymmetric aldol reactions // Mater. Chem. Phys. 2013. V. 138. N 1. P. 131–139. https://doi.org/10.1016/j.matchemphys.2012.11.032
- Yao C., Li H., Wu H., Liu Y., Wu P. Mesostructured polymer-supported diphenylphosphine–palladium complex: An efficient and recyclable catalyst for Heck reactions // Catal. Commun. 2009. V. 10. N 7. P. 1099–1102. https://doi.org/10.1016/J.CATCOM.2009.01.005
- Бороноев М. П., Субботина Е. С., Курмаева А. А., Кардашева Ю. С., Максимов А. Л., Караханов Э. А. Наночастицы платины и палладия в модифицированных мезопористых фенолформальдегидных полимерах как катализаторы гидрирования // Нефтехимия. 2016. Т. 56. № 2. С. 128–139. https://doi.org/10.7868/S0028242116020052
- Ding J., Tang Q., Fu Y., Zhang Y., Hu J., Li T., Zhong Q., Fan M., Kung H. H. Core-shell covalently linked graphitic carbon nitride-melamine-resorcinol-formaldehyde microsphere polymers for efficient photocatalytic CO2 reduction to methanol // J. Am. Chem. Soc. 2022. V. 144. N 22. P. 9576–9585. https://doi.org/10.1021/jacs.1c13301
- Deng D., Yang Y., Gong Y., Li Y., Xu X., Wang Y. Palladium nanoparticles supported on mpg-C3N4 as active catalyst for semihydrogenation of phenylacetylene under mild conditions // Green Chem. 2013. V. 15. N 9. P. 2525–2531. https://doi.org/10.1039/c3gc40779a
- Advani J. H., Khan N. H., Bajaj H. C., Biradar A. V. Stabilization of palladium nanoparticles on chitosan derived N-doped carbon for hydrogenation of various functional groups // Appl. Surf. Sci. 2019. V. 487. P. 1307–1315. https://doi.org/10.1016/j.apsusc.2019.05.057
- Liu J., Lin S., Sun J., Ma L. In-situ facile synthesis novel N-doped thin graphene layer encapsulated Pd@N/C catalyst for semi-hydrogenation of alkynes // J. Catal. 2022. V. 405. P. 553–560. https://doi.org/10.1016/j.jcat.2021.11.012
- Ge Q., Yu H., Zhang L., Ni S., Wu W., Yang H., Liu J., Huang K. Honeycomb-like nitrogen-doped porous carbon nanosphere encapsulated ultrafine Pd nanoparticles for selectively catalyzing hydrogenation of cinnamaldehyde in water // Micropor. Mesopor. Mater. 2022. V. 336. P. 111865. https://doi.org/10.1016/j.micromeso.2022.111865
- Contreras R. C., Guicheret B., Machado B. F., Rivera-Cárcamo C., Curiel Alvarez M. A., Valdez Salas B., Ruttert M., Placke T., Favre Réguillon A., Vanoye L., de Bellefon C., Philippe R., Serp P. Effect of mesoporous carbon support nature and pretreatments on palladium loading, dispersion and apparent catalytic activity in hydrogenation of myrcene // J. Catal. 2019. V. 372. P. 226–244. https://doi.org/10.1016/j.jcat.2019.02.034
- Zhang W., Wang F., Li X., Liu Y., Liu Y., Ma J. Fabrication of hollow carbon nanospheres introduced with Fe and N species immobilized palladium nanoparticles as catalysts for the semihydrogenation of phenylacetylene under mild reaction conditions // Appl. Surf. Sci. 2017. V. 404. P. 398–408. https://doi.org/10.1016/j.apsusc.2017.01.298
- Li X., Pan Y., Yi H., Hu J., Yang D., Lv F., Li W., Zhou J., Wu X., Lei A., Zhang L. Mott-Schottky effect leads to alkyne semihydrogenation over Pd-Nanocube@N-Doped carbon // ACS Catal. 2019. V. 9. N 5. P. 4632–4641. https://doi.org/10.1021/acscatal.9b01001
- Li S., Yue G., Li H., Liu J., Hou L., Wang N., Cao C., Cui Z., Zhao Y. Pd single atom stabilized on multiscale porous hollow carbon fibers for phenylacetylene semi-hydrogenation reaction // Chem. Eng. J. 2023. V. 454. P. 140031. https://doi.org/10.1016/j.cej.2022.140031
- Chaikittisilp W., Ariga K., Yamauchi Y. A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications // J. Mater. Chem. A. 2013. V. 1. N 1. P. 14–19. https://doi.org/10.1039/c2ta00278g
- Shi J., Dou K., Xie D., Zhang F. Semi-hydrogenation of acetylenic alcohol to olefinic alcohol catalyzed by Pd nanoparticles embedded in nitrogen-enriched porous carbon derived from ZIF-8 // Appl. Catal. O: Open. 2024. V. 191. January. P. 206917. https://doi.org/10.1016/j.apcato.2024.206917
- Li X., Zhang W., Liu Y., Li R. Palladium nanoparticles immobilized on magnetic porous carbon derived from ZIF-67 as efficient catalysts for the semihydrogenation of phenylacetylene under extremely mild conditions // ChemCatChem. 2016. V. 8. N 6. P. 1111–1118. https://doi.org/10.1002/cctc.201501283
- Luo Q., Wang Z., Chen Y., Mao S., Wu K., Zhang K., Li Q., Lv G., Huang G., Li H., Wang Y. Dynamic modification of palladium catalysts with chain alkylamines for the selective hydrogenation of alkynes // ACS Appl. Mater. Interfaces. 2021. V. 13. N 27. P. 31775–31784. https://doi.org/10.1021/acsami.1c09682
- Bavykina A., Kolobov N., Khan I. S., Bau J. A., Ramirez A., Gascon J. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives // Chem. Rev. 2020. V. 120. N 16. P. 8468–8535. https://doi.org/10.1021/acs.chemrev.9b00685
- Konnerth H., Prechtl M. H. G. Selective partial hydrogenation of alkynes to (Z)-alkenes with ionic liquid-doped nickel nanocatalysts at near ambient conditions // Chem. Commun. 2016. V. 52. N 58. P. 9129–9132. https://doi.org/10.1039/C6CC00499G
- Furukawa H., Ko N., Go Y. B., Aratani N., Choi S. B., Choi E., Yazaydin A. Ö., Snurr R. Q., OʹKeeffe M., Kim J., Yaghi O. M. Ultrahigh porosity in metal-organic frameworks // Science. 2010. V. 329. N 5990. P. 424–428. https://doi.org/10.1126/science.1192160
- Yin D., Li C., Ren H., Shekhah O., Liu J., Liang C. Efficient Pd@MIL-101(Cr) hetero-catalysts for 2-butyne-1,4-diol hydrogenation exhibiting high selectivity // RSC Adv. 2017. V. 7. N 3. P. 1626–1633. https://doi.org/10.1039/c6ra25722d
- Wu H. Q., Huang L., Li J. Q., Zheng A. M., Tao Y., Yang L. X., Yin W. H., Luo F. Pd@Zn-MOF-74: Restricting a guest molecule by the open-metal site in a metal-organic framework for selective semihydrogenation // Inorg. Chem. 2018. V. 57. N 20. P. 12444–12447. https://doi.org/10.1021/acs.inorgchem.8b01652
- Isaeva V. I., Tkachenko O. P., Afonina E. V., Kozlova L. M., Kapustin G. I., Grünert W., Solovʹeva S. E., Antipin I. S., Kustov L. M. 2-Butyne-1,4-diol hydrogenation over palladium supported on Zn2+-based — MOF and host-guest MOF/calix[4]arene materials // Micropor. Mesopor. Mater. 2013. V. 166. P. 167–175. https://doi.org/10.1016/j.micromeso.2012.04.030
- Baimuratova R. K., Andreeva A. V., Uflyand I. E., Shilov G. V., Bukharbayeva F. U., Zharmagambetova A. K., Dzhardimalieva G. I. Synthesis and catalytic activity in the hydrogenation reaction of palladium-doped metal-organic frameworks based on oxo-centered zirconium complexes // J. Compos. Sci. 2022. V. 6. N 10. P. 299. https://doi.org/10.3390/jcs6100299
- Choe K., Zheng F., Wang H., Yuan Y., Zhao W., Xue G., Qiu X., Ri M., Shi X., Wang Y., Li G., Tang Z. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks // Angew. Chemie. 2020. V. 132. N 9. P. 3679–3686. https://doi.org/10.1002/ange.201913453
- Bakuru V. R., Velaga B., Peela N. R., Kalidindi S. B. Hybridization of Pd nanoparticles with UiO-66(Hf) metal-organic framework and the wffect of nanostructure on the catalytic properties // Chem. — A Eur. J. 2018. V. 24. N 60. P. 15978–15982. https://doi.org/10.1002/CHEM.201803200
- Li Z., Hu M., Liu J., Wang W., Li Y., Fan W., Gong Y., Yao J., Wang P., He M., Li Y. Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site // Nano Res. 2022. V. 15. N 3. P. 1983–1992. https://doi.org/10.1007/s12274-021-3849-2
- Li L., Yang W., Yang Q., Guan Q., Lu J., Yu S. H., Jiang H. L. Accelerating chemo- and regioselective hydrogenation of alkynes over bimetallic nanoparticles in a metal-organic framework // ACS Catal. 2020. V. 10. N 14. P. 7753–7762. https://doi.org/10.1021/acscatal.0c00177
- Peng L., Zhang J., Yang S., Han B., Sang X., Liu C., Yang G. The ionic liquid microphase enhances the catalytic activity of Pd nanoparticles supported by a metal-organic framework // Green Chem. 2015. V. 17. N 8. P. 4178–4182. https://doi.org/10.1039/c5gc01333j
- Kandiah M., Nilsen M. H., Usseglio S., Jakobsen S., Olsbye U., Tilset M., Larabi C., Quadrelli E. A., Bonino F., Lillerud K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs // Chem. Mater. 2010. V. 22. N 24. P. 6632–6640. https://doi.org/10.1021/cm102601v
- Das S., Heasman P., Ben T., Qiu S. Porous organic materials: Strategic design and structure-function correlation // Chem. Rev. 2017. V. 117. N 3. P. 1515–1563. https://doi.org/10.1021/acs.chemrev.6b00439
- Giri A., Patra A. Porous organic polymers: Promising testbed for heterogeneous reactive oxygen species mediated photocatalysis and nonredox CO2 fixation // Chem. Rec. 2022. V. 22. N 9. P. e202200071. https://doi.org/10.1002/tcr.202200071
- Sarkar C., Shit S. C., Das N., Mondal J. Presenting porous-organic-polymers as next-generation invigorating materials for nanoreactors // Chem. Commun. 2021. V. 57. N 69. P. 8550–8567. https://doi.org/10.1039/d1cc02616j
- Huang J., Turner S. R. Hypercrosslinked polymers: A review // Polym. Rev. 2018. V. 58. N 1. P. 1–41. https://doi.org/10.1080/15583724.2017.1344703
- Tan L., Tan B. Hypercrosslinked porous polymer materials: Design, synthesis, and applications // Chem. Soc. Rev. 2017. V. 46. N 11. P. 3322–3356. https://doi.org/10.1039/c6cs00851h
- Sulman E. M., Nikoshvili L. Z., Matveeva V. G., Tyamina I. Y., Sidorov A. I., Bykov A. V., Demidenko G. N., Stein B. D., Bronstein L. M. Palladium containing catalysts based on hypercrosslinked polystyrene for selective hydrogenation of acetylene alcohols // Top. Catal. 2012. V. 55. N 7–10. P. 492–497. https://doi.org/10.1007/s11244-012-9810-6
- Nikoshvili L., Shimanskaya E., Bykov A., Yuranov I., Kiwi-Minsker L., Sulman E. Selective hydrogenation of 2-methyl-3-butyn-2-ol over Pd-nanoparticles stabilized in hypercrosslinked polystyrene: Solvent effect // Catal. Today. 2015. V. 241. P. 179–188. https://doi.org/10.1016/j.cattod.2014.01.045
- Nikoshvili L. Z., Popov A. Y., Bykov A. V., Sidorov A. I., Kiwi-Minsker L. Hybrid Pd-nanoparticles within polymeric network in selective hydrogenation of alkynols: Influence of support porosity // Molecules. 2022. V. 27. N 12. P. 3842. https://doi.org/10.3390/molecules27123842
- Nikoshvili L. Z., Makarova A. S., Lyubimova N. A., Bykov A. V., Sidorov A. I., Tyamina I. Y., Matveeva V. G., Sulman E. M. Kinetic study of selective hydrogenation of 2-methyl-3-butyn-2-ol over Pd-containing hypercrosslinked polystyrene // Catal. Today. 2015. V. 256. P. 231–240. https://doi.org/10.1016/j.cattod.2015.02.033
- Nemygina N. A., Nikoshvili L. Z., Matveeva V. G., Sulman M. G., Sulman E. M., Kiwi-Minsker L. Pd-Nanoparticles confined within hollow polymeric framework as effective catalysts for the synthesis of fine chemicals // Top. Catal. 2016. V. 59. N 13–14. P. 1185–1195. https://doi.org/10.1007/s11244-016-0639-2
- Nikoshvili L. Z., Bykov A. V., Khudyakova T. E., Lagrange T., Héroguel F., Luterbacher J. S., Matveeva V. G., Sulman E. M., Dyson P. J., Kiwi-Minsker L. Promotion effect of alkali metal hydroxides on polymer-stabilized Pd nanoparticles for selective hydrogenation of C-C triple bonds in alkynols // Ind. Eng. Chem. Res. 2017. V. 56. N 45. P. 13219–13227. https://doi.org/10.1021/acs.iecr.7b01612
- Bakhvalova E. S., Pinyukova A. O., Mikheev A. V., Demidenko G. N., Sulman M. G., Bykov A. V., Nikoshvili L. Z., Kiwi-Minsker L. Noble metal nanoparticles stabilized by hyper-cross-linked polystyrene as effective catalysts in hydrogenation of arenes // Molecules. 2021. V. 26. N 15. P. 4687. https://doi.org/10.3390/molecules26154687
- Bhanja P., Liu X., Modak A. Pt and Pd nanoparticles immobilized on amine-functionalized hypercrosslinked porous polymer nanotubes as selective hydrogenation catalyst for α,β-unsaturated aldehydes // ChemistrySelect. 2017. V. 2. N 25. P. 7535–7543. https://doi.org/10.1002/slct.201701761
- Song H., Liu Y., Wang Y., Feng B., Jin X., Huang T., Xiao M., Gai H. Design of hypercrosslinked poly(ionic liquid)s for efficiently catalyzing high-selective hydrogenation of phenylacetylene under ambient conditions // Mol. Catal. 2020. V. 493. June. P. 111081. https://doi.org/10.1016/j.mcat.2020.111081
- Liu K., Wang A., Mao Y., Jia Z., Su Y., Wen X. Synthesis of ultrafine Pd nanoparticles encapsulated in imidazolium-based porous polymers for semi-hydrogenation of alkynes // Mol. Catal. 2023. V. 543. January. P. 113130. https://doi.org/10.1016/j.mcat.2023.113130
- Karakhanov E., Maximov A., Zolotukhina A. Heterogeneous dendrimer-based catalysts // Polymers (Basel). 2022. V. 14. N 5. P. 981. https://doi.org/10.3390/polym14050981
- Yamamoto K., Imaoka T., Tanabe M., Kambe T. New horizon of nanoparticle and cluster catalysis with dendrimers // Chem. Rev. 2020. V. 120. N 2. P. 1397–1437. https://doi.org/10.1021/acs.chemrev.9b00188
- Kobayashi S. Nanoparticles in Catalysis. Springer International Publishing, 2020. P. 131–170. https://doi.org/10.1007/978-3-030-56630-2
- Fischer M., Vögtle F. Dendrimers: From design to application — A progress report // Angew. Chemie Int. Ed. 1999. V. 38. N 7. P. 884–905. https://doi.org/10.1002/(SICI)1521-3773 (19990401)38:7<884::AID-ANIE884>3.0.CO;2-K
- Vögtle F. Functional dendrimers // Prog. Polym. Sci. 2000. V. 25. N 7. P. 987–1041. https://doi.org/10.1016/S0079-6700(00)00017-4
- Tomalia D. A., Baker H., Dewald J., Hall M., Kallos G., Martin S., Roeck J., Ryder J., Smith P. A new class of polymers: Starburst-dendritic // Polym. J. 1985. V. 17. N I. P. 117–132.
- Maeno Z., Kibata T., Mitsudome T., Mizugaki T., Jitsukawa K., Kaneda K. Subnanoscale size effect of dendrimer-encapsulated Pd clusters on catalytic hydrogenation of olefin // Chem. Lett. 2011. V. 40. N 2. P. 180–181. https://doi.org/10.1246/cl.2011.180
- Wu L., Li B. L., Huang Y. Y., Zhou H. F., He Y. M., Fan Q. H. Phosphine dendrimer-stabilized palladium nanoparticles, a highly active and recyclable catalyst for the Suzuki–Miyaura reaction and hydrogenation // Org. Lett. 2006. V. 8. N 16. P. 3605–3608. https://doi.org/10.1021/ol0614424
- Ratheesh Kumar V. K., Gopidas K. R. Palladium nanoparticle-cored G1-dendrimer stabilized by carbon–Pd bonds: Synthesis, characterization and use as chemoselective, room temperature hydrogenation catalyst // Tetrahedron Lett. 2011. V. 52. N 24. P. 3102–3105. https://doi.org/10.1016/J.TETLET.2011.04.011
- Ornelas C., Aranzaes J. R., Salmon L., Astruc D. «Click» dendrimers: Synthesis, redox sensing of Pd(OAc) 2, and remarkable catalytic hydrogenation activity of precise Pd nanoparticles stabilized by 1,2,3-triazole-containing dendrimers // Chem. — A Eur. J. 2008. V. 14. N 1. P. 50–64. https://doi.org/10.1002/chem.200701410
- Murata M., Tanaka Y., Mizugaki T., Ebitani K., Kaneda K. Palladium-platinum bimetallic nanoparticle catalysts using dendron assembly for selective hydrogenation of dienes and their application to thermomorphic system // Chem. Lett. 2005. V. 34. N 2. P. 272–273. https://doi.org/10.1246/cl.2005.272
- Mizugaki T., Murata M., Fukubayashi S., Mitsudome T., Jitsukawa K., Kaneda K. PAMAM dendron-stabilised palladium nanoparticles: Effect of generation and peripheral groups on particle size and hydrogenation activity // Chem. Commun. 2008. V. 2. N 2. P. 241–243. https://doi.org/10.1039/B710860E
- Borkowski T., Subik P., Trzeciak A. M., Wołowiec S. Palladium(0) deposited on PAMAM dendrimers as a catalyst for C-C cross coupling reactions // Molecules. 2011. V. 16. N 1. P. 427–441. https://doi.org/10.3390/molecules16010427
- Wang Y., Peng X. RuRh bimetallic nanoparticles stabilized by 15-membered macrocycles-terminated poly(propylene imine) dendrimer: Preparation and catalytic hydrogenation of nitrile–butadiene rubber // Nano-Micro Lett. 2014. V. 6. N 1. P. 55–62. https://doi.org/10.5101/nml.v6i1.p55-62
- Karakhanov E. A., Maximov A. L., Skorkin V. A., Zolotukhina A. V., Smerdov A. S., Tereshchenko A. Y. Nanocatalysts based on dendrimers // Pure Appl. Chem. 2009. V. 81. N 11. P. 2013–2023. https://doi.org/10.1351/PAC-CON-08-10-15
- Караханов Э. А., Максимов А. Л., Золотухина А. В., Кардашев С. В., Филиппова Т. Ю. Наночастицы палладия на дендримерсодержащих носителях как катализаторы гидрирования непредельных углеводородов // Нефтехимия. 2012. Т. 52. № 5. С. 323–332. https://doi.org/10.1134/S0965544112050052
- Parenago O. P., Timashev P. S., Karakhanov E. A., Maximov A. L., Lazhko A. E., Zolotukhina A. V., Bagratashvili V. N. Obtaining of highly-active catalysts of unsaturated compounds hydrogenation by using supercritical carbon dioxide // J. Supercrit. Fluids. 2018. V. 140. P. 387–393. https://doi.org/10.1016/j.supflu.2018.07.010
- Geng K., He T., Liu R., Dalapati S., Tan K. T., Li Z., Tao S., Gong Y., Jiang Q., Jiang D. Covalent organic frameworks: Design, synthesis, and functions // Chem. Rev. 2020. V. 120. N 16. P. 8814–8933. https://doi.org/10.1021/acs.chemrev.9b00550
- Côté A. P., Benin A. I., Ockwig N. W., OʹKeeffe M., Matzger A. J., Yaghi O. M. Porous, crystalline, covalent organic frameworks // Science. 2005. V. 310. N 5751. P. 1166–1170. https://doi.org/10.1126/science.1120411
- Diercks C. S., Yaghi O. M. The atom, the molecule, and the covalent organic framework // Science. 2017. V. 355. N 6328. P. eaal1585. https://doi.org/10.1126/science.aal1585
- Guan X., Chen F., Qiu S., Fang Q. Three-dimensional covalent organic frameworks: From synthesis to applications // Angew. Chemie Int. Ed. 2023. V. 62. N 3. P. e202213203. https://doi.org/10.1002/anie.202213203
- Li J. H., Yu Z. W., Gao Z., Li J. Q., Tao Y., Xiao Y. X., Yin W. H., Fan Y. L., Jiang C., Sun L. J., Luo F. Ultralow-content palladium dispersed in covalent organic framework for highly efficient and selective semihydrogenation of alkynes // Inorg. Chem. 2019. V. 58. N 16. P. 10829–10836. https://doi.org/10.1021/acs.inorgchem.9b01117
- Li J. H., Yu Z. W., Li J. Q., Fan Y. L., Gao Z., Xiong J. B., Wang L., Tao Y., Yang L. X., Xiao Y. X., Luo F. Constructing PtI@COF for semi-hydrogenation reactions of phenylacetylene // J. Solid State Chem. 2020. V. 285. P. 121176. https://doi.org/10.1016/j.jssc.2020.121176
- Yun S., Lee S., Yook S., Patel H. A., Yavuz C. T., Choi M. Cross-linked «poisonous» polymer: Thermochemically stable catalyst support for tuning chemoselectivity // ACS Catal. 2016. V. 6. N 4. P. 2435–2442. https://doi.org/10.1021/acscatal.5b02613
- Huang N., Chen X., Krishna R., Jiang D. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization // Angew. Chemie — Int. Ed. 2015. V. 54. N 10. P. 2986–2990. https://doi.org/10.1002/anie.201411262
- Lu Q., Ma Y., Li H., Guan X., Yusran Y., Xue M., Fang Q., Yan Y., Qiu S., Valtchev V. Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions // Angew. Chemie — Int. Ed. 2018. V. 57. N 21. P. 6042–6048. https://doi.org/10.1002/anie.201712246
- Sun Q., Aguila B., Perman J., Earl L. D., Abney C. W., Cheng Y., Wei H., Nguyen N., Wojtas L., Ma S. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal // J. Am. Chem. Soc. 2017. V. 139. N 7. P. 2786–2793. https://doi.org/10.1021/jacs.6b12885
- Kou J., Wang W. D., Fang J., Li F., Zhao H., Li J., Zhu H., Li B., Dong Z. Precisely controlled Pd nanoclusters confined in porous organic cages for size-dependent catalytic hydrogenation // Appl. Catal. B: Environmental. 2022. V. 315. P. 121487. https://doi.org/10.1016/j.apcatb.2022.121487
- Xu Y., Jin S., Xu H., Nagai A., Jiang D. Conjugated microporous polymers: Design, synthesis and application // Chem. Soc. Rev. 2013. V. 42. N 20. P. 8012–8031. https://doi.org/10.1039/c3cs60160a
- Lee J. S. M., Cooper A. I. Advances in conjugated microporous polymers // Chem. Rev. 2020. V. 120. N 4. P. 2171–2214. https://doi.org/10.1021/acs.chemrev.9b00399
- Ji D., Liang Y., Zhang C., Wang B., Zhang Z., Gao X. Preparation of palladium nanoparticles supported on conjugated microporous polymers with excellent catalytic performance // Mater. Res. Innov. 2017. V. 21. N 1. P. 10–14. https://doi.org/10.1179/1433075X15Y.0000000075
- Ishida T., Onuma Y., Kinjo K., Hamasaki A., Ohashi H., Honma T., Akita T., Yokoyama T., Tokunaga M., Haruta M. Preparation of microporous polymer-encapsulated Pd nanoparticles and their catalytic performance for hydrogenation and oxidation // Tetrahedron. 2014. V. 70. N 36. P. 6150–6155. https://doi.org/10.1016/j.tet.2014.04.049
- Trandafir M. M., Pop L., Hădade N. D., Florea M., Neațu F., Teodorescu C. M., Duraki B., van Bokhoven J. A., Grosu I., Pârvulescu V. I., Garcia H. An adamantane-based COF: Stability, adsorption capability, and behaviour as a catalyst and support for Pd and Au for the hydrogenation of nitrostyrene // Catal. Sci. Technol. 2016. V. 6. N 23. P. 8344–8354. https://doi.org/10.1039/c6cy01631f
- Ben T., Ren H., Shengqian M., Cao D., Lan J., Jing X., Wang W., Xu J., Deng F., Simmons J. M., Qiu S., Zhu G. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area // Angew. Chemie — Int. Ed. 2009. V. 48. N 50. P. 9457–9460. https://doi.org/10.1002/anie.200904637
- Tian Y., Zhu G. Porous aromatic frameworks (PAFs) // Chem. Rev. 2020. V. 120. N 16. P. 8934–8986. https://doi.org/10.1021/acs.chemrev.9b00687
- Yuan D., Lu W., Zhao D., Zhou H. C. Highly stable porous polymer networks with exceptionally high gas-uptake capacities // Adv. Mater. 2011. V. 23. N 32. P. 3723–3725. https://doi.org/10.1002/adma.201101759
- Куликов Л. А., Теренина М. В., Кряжева И. Ю., Караханов Э. А. Наноразмерные катализаторы гидрирования непредельных соединений на основе частиц палладия и платины, иммобилизованных в поры мезопористых ароматических каркасов // Нефтехимия. 2017. Т. 57. № 2. С. 163–170. https://doi.org/10.7868/S0028242117020101
- Karakhanov E., Maximov A., Terenina M., Vinokurov V., Kulikov L., Makeeva D., Glotov A. Selective hydrogenation of terminal alkynes over palladium nanoparticles within the pores of amino-modified porous aromatic frameworks // Catal. Today. 2020. V. 357. P. 176–184. https://doi.org/10.1016/j.cattod.2019.05.028
- Kulikov L., Kalinina M., Makeeva D., Maximov A., Kardasheva Y., Terenina M., Karakhanov E. Palladium catalysts based on porous aromatic frameworks, modified with ethanolamino-groups, for hydrogenation of alkynes, alkenes and dienes // Catalysts. 2020. V. 10. N 10. P. 1106. https://doi.org/10.3390/catal10101106
- Li L., Zhao H., Wang J., Wang R. Facile fabrication of ultrafine palladium nanoparticles with size- and location-control in click-based porous organic polymers // ACS Nano. 2014. V. 8. N 5. P. 5352–5364. https://doi.org/10.1021/nn501853g
- Zhong H., Liu C., Wang Y., Wang R., Hong M. Tailor-made porosities of fluorene-based porous organic frameworks for the pre-designable fabrication of palladium nanoparticles with size, location and distribution control // Chem. Sci. 2016. V. 7. N 3. P. 2188–2194. https://doi.org/10.1039/c5sc04351d
- Liu J., Wang N., Liu J., Li M., Xu Y., Wang C., Wang Y., Zheng H., Ma L. The immobilization of Pd(II) on porous organic polymers for semihydrogenation of terminal alkynes // ACS Appl. Mater. Interfaces. 2020. V. 12. N 46. P. 51428–51436. https://doi.org/10.1021/acsami.0c14486
- Шакиров И. И., Бороноев М. П., Синикова Н. А., Караханов Э. А., Максимов А. Л. Селективное гидрирование фенилацетилена на Pd-содержащем катализаторе на основе полимерного слоистого носителя // ЖПХ. 2020. Т. 93. № 2. С. 264–274. https://doi.org/10.31857/S0044461820020152 [Shakirov I. I., Boronoev M. P., Sinikova N. A., Karakhanov E. A., Maksimov A. L. Selective hydrogenation of phenylacetylene on a Pd-containing catalyst based on a polymer layered substrate // Russ. J. Appl. Chem. 2020. V. 93. N 2. P. 258–267. https://doi.org/10.1134/S1070427220020159].
- Kumar P., Das A., Maji B. Phosphorus containing porous organic polymers: Synthetic techniques and applications in organic synthesis and catalysis // Org. Biomol. Chem. 2021. V. 19. N 19. P. 4174–4192. https://doi.org/10.1039/d1ob00137j
- Ding Z. C., Li C. Y., Chen J. J., Zeng J. H., Tang H. T., Ding Y. J., Zhan Z. P. Palladium/phosphorus-doped porous organic polymer as recyclable chemoselective and efficient hydrogenation catalyst under ambient conditions // Adv. Synth. Catal. 2017. V. 359. N 13. P. 2280–2287. https://doi.org/10.1002/adsc.201700374
补充文件
