Amino catalysts in the synthesis of cross-linked silicone diclofenac-containing composites

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Low molecular mono- and diamines (3-aminopropyltriethoxysilane, hexamethylenediamine, 1,4-diaminobutane), and high molecular weight polydimethylsiloxane with terminal amine groups were studied as catalysts in the synthesis of cross-linked composite films based on polydimethylsiloxane with terminal hydroxyl groups, tetraethoxysilane a cross-linking agent and containing sodium diclofenac as a physiologically active compound. Polyethylene glycol PEG200 was used as a hydrophilizing component for the hydrophobic silicone matrix. The chemical structure of amine catalysts and polyethylene glycol presence have significant effect on structure and properties of the composites, thereby determining the kinetics and degree of prolonged release of diclofenac from the films.

Full Text

Restricted Access

About the authors

Z. M. Farmazyan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Email: grigstepan@yahoo.com
ORCID iD: 0000-0001-9841-5586

Institute of Fine Organic Chemistry named after A. L. Mnjoyan

Armenia, Yerevan, 0014

M. L. Atabekyan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Email: grigstepan@yahoo.com
ORCID iD: 0000-0002-5265-5469

Institute of Fine Organic Chemistry named after A. L. Mnjoyan

Armenia, Yerevan, 0014

E. A. Akobyan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Email: grigstepan@yahoo.com
ORCID iD: 0000-0003-2409-1894

Institute of Fine Organic Chemistry named after A. L. Mnjoyan

Armenia, Yerevan, 0014

V. O. Topuzyan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Email: grigstepan@yahoo.com
ORCID iD: 0000-0002-1721-1993

Institute of Fine Organic Chemistry named after A. L. Mnjoyan

Armenia, Yerevan, 0014

E. R. Arakelova

National Polytechnic University of Armenia

Email: grigstepan@yahoo.com
ORCID iD: 0000-0001-6640-8998
Armenia, Yerevan, 0009

S. L. Grigoryan

National Polytechnic University of Armenia

Email: grigstepan@yahoo.com
ORCID iD: 0000-0001-6342-4060
Armenia, Yerevan, 0009

S. G. Grigoryan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia

Author for correspondence.
Email: grigstepan@yahoo.com
ORCID iD: 0000-0002-7193-9803

Institute of Fine Organic Chemistry named after A. L. Mnjoyan

Armenia, Yerevan, 0014

References

  1. Mojsiewicz-Pieńkowska K. In: Handbook of Polymers for Pharmaceutical Technologies. Beverly: Scrivener Publishing LLC, 2015. Vol. 2. P. 363. https://doi.org/10.1002/9781119041412ch13
  2. Mashak A., Rahimi A. // Iran. Polym. J. 2009. Vol. 18. N 4. P. 279.
  3. Aliyar H., Schalau G. // Therapeutic Delivery. 2015. Vol. 6. N 7. P. 827. doi: 10.4155/tde.15.39
  4. Stewart S., Domínguez-Robles J., Donnelly R., Larrañeta E. // Polymers. 2018. Vol. 10. N 12. P. 1379. doi: 10.3390/polym10121379
  5. Rongthong T., Qnouch A., Maue Gehrke M., Paccou L., Oliveira P., Danede F., Verin J., Vincent C., Willart J.F., Siepmann F., Siepmann J. // Regen. Biomater. 2023. Vol. 10. Art. ID rbad008. doi: 10.1093/rb/rbad008
  6. Siepmann J., Peppas N.A. // Adv. Drug Deliv. Rev. 2001. Vol. 48. P. 39. doi: 10.1016/j.addr.2012.09.028
  7. Gao Z., Schulze Nahrup J., Mark J.E., Sakr A. // J. Appl. Polym. Sci. 2003. Vol. 90. P. 658. doi: 10.1002/app.12700
  8. Langer R., Peppas N.A. // Rev. Macromol. Chem. Phys. 1983. Vol. C23. P. 61. doi: 10.1080/07366578308079439
  9. Snorradottir B.S., Gudnason P., Scheving R., Thorsteinsson F., Masson M. // Pharmazie. 2009. Vol. 64. N 1. P. 19. doi: 10.1691/ph.2008.8206
  10. Snorradottir B.S., Gudnason P., Thorsteinsson F., Masson M. // Eur. J. Pharm. Sci. 2011. Vol. 42. N 5. P. 559. doi: 10.1016/j.ejps.2011.02.0111
  11. Mazurek P., Brook M.A., Skov A.L. // Langmuir. 2018. Vol. 34. N 38. P. 11559. doi: 10.1021/acs.langmuir.8b02039
  12. Malcolm R., McCullagh S., Woolfson A., Gorman S., Jones D., Cuddy J. // J. Control. Release. 2004. Vol. 97. N 2. P. 313. doi: 10.1039/b313483k
  13. Soulas D.N., Sanopoulou M., Papadokostaki K.G. // Mater. Sci. Eng. 2013. Vol. 33. N 4. P. 2122. doi: 10.1002/app.38711
  14. Brook M.A., Holloway A.C., Kenneth K., Ng., Hrynyk M., Moore C., Ryan L. // Int. J. Pharm. 2008. Vol. 358. N 1. P. 121. doi: 10.1016/j.ijpharm.2008.02.029
  15. Rajendra V., Gonzaga F., Brook M.A. // Langmuir. 2012. Vol. 28. P. 1470. doi: 10.1021/la203550
  16. Atabekyan M.L., Farmazyan Z.M., Grigoryan S.G., Lavanant L., Topuzyan V.O. Pat. EU 4322906 (2024); Pat. JP 2024514128A (2024); Pat. 3214923 (2023) Canada; Pat. US 20240197648 (2024).
  17. Ottenbrite R.M., Wall J.S., Siddiqui J.A. // J. Am. Ceram. Soc. 2000. Vol. 83. N 12. P. 3214. doi: 10.1111/j.1151-2916.2000.tb01709.x
  18. Farmazyan Z.M., Atabekyan M.L., Hakobyan E.H., Shahkhatuni A.G., Arakelova E.R., Grigoryan S.L., Grigoryan S.G., Topuzyan V.O. // Chem. J. Armenia. 2022. Vol. 75. N 3–4. P. 321. doi: 10.54503/0515-9628-2022.75.3-321
  19. Sánchez-Téllez D.A., Rodríguez-Lorenzo L.M., Téllez-Jurado L. // Carbohydrate Polym. 2019. Vol. 249. P. 115590. doi: 10.1016/j/carbpol.2019.115590
  20. Carelli V., Di Colo G. // J. Pharm. Sci. 1983. Vol. 72. N 3. P. 316. doi: 10.1002/jps,2600720329
  21. Colo G.D. // Biomaterials. 1992. Vol. 13. N 12. P. 850. doi: 10.1016/0142-9612(92)90178-q
  22. Peña-Alonso R., Rubio F., Rubio J., Oteo J.L. // J. Mat. Sci. 2007. Vol. 42. N 2. P. 595 doi: 10.1007/s10853-006-1138-9
  23. Kovala-Demertzi D., Mentzafos D., Terzis A. // Polyhedron. 1993. Vol. 12. N 11. P. 1361. doi: 10.1016/s0277-5387(00)84327-2
  24. Tasić A.M., Pergal M.V., Antić M.P., Antić V.V. // J. Serb. Chem. Soc. 2017. Vol. 82. N 12. P. 1395. doi: 10.2298/JSC170427082T
  25. Bartolomei M., Rodomonte A., Antoniella E., Minelli G., Bertocchi. P. // J. Pharm. Biomed. Anal. 2007. Vol. 45. N 3. P. 443. doi: 10.1016/j/jpba.2007.07.002
  26. Kloubek J. // Adv. Colloid Interface Sci. 1992. Vol. 38. P. 99. doi: 10.1016/0001-8686(92)80044-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Kinetic curves of diclofenac sodium release and the degree of swelling of bulk samples A (a, b) and B (c, d). a, b: 1 – A-APT, 2 – A-HMDA, 3 – A-PDS, 4 – A-DAB; c, d: 1 – B-APT, 2 – B-HMDA, 3 – B-PDS, 4 – B-DAB.

Download (245KB)
3. Fig. 2. Kinetic curves of diclofenac sodium release (a) and film swelling (b) depending on the type of catalyst and the amount of PEG200. 1 – G-HMDA, 2 – G-DAB, 3 – B-PDS, 4 – B-DAB, 5 – B-HMDA, 6 – B-APT.

Download (161KB)
4. Fig. 3. Micrographs of the surface of B-APT film containing sodium diclofenac and ~11% polyethyleneglycol. The film was obtained from PDMS-OH and TEOS in the presence of APTES catalyst.

Download (341KB)
5. Fig. 4. IR spectra of APTES (1), sodium diclofenac (2) and their mixture (3).

Download (132KB)
6. Fig. 5. Diffraction patterns of sodium diclofenac (1) and B-APT film containing ~11% PEG200. The film was obtained by the interaction of PDMS-OH and TEOS in the presence of APTES catalyst.

Download (74KB)
7. Fig. 6. Micrographs of the surface of B-PDS film containing sodium diclofenac and ~11% PEG200. The film was obtained by the interaction of PDMS-OH and TEOS in the presence of PDMS-NH2 catalyst.

Download (162KB)
8. Fig. 7. Micrographs of the surface of B-HMDA film containing sodium diclofenac and ~11% polyethyleneglycol. The film was obtained by the interaction of PDMS-OH and TEOS in the presence of HMDA catalyst.

Download (387KB)
9. Fig. 8. Micrographs of the surface of the HMDA film containing sodium diclofenac and ~20% PEG200. The film was obtained by the interaction of PDMS-OH and TEOS in the presence of the HMDA catalyst.

Download (346KB)
10. Fig. 9. Diffraction patterns of hexamethylenediamine (1), sodium diclofenac (2), B-HMDA film (3, 11% PEG200), G-HMDA film (4, 20% PEG200).

Download (100KB)
11. Fig. 10. IR spectra of HMDA (1), sodium diclofenac (2) and their mixture (3).

Download (122KB)
12. Fig. 11. IR spectra of PEG200 (1), sodium diclofenac (2) and their mixture (3).

Download (131KB)
13. Scheme 1.

Download (88KB)
14. Scheme 2.

Download (71KB)
15. Scheme 3.

Download (111KB)

Copyright (c) 2024 Russian Academy of Sciences