Mixed Ligand Zinc Complexation with Ornithine and Histidine in Aqueous Solution
- 作者: Nikitina M.G.1, Gruzdev M.S.1, Pyreu D.F.2
-
隶属关系:
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences
- Ivanovo State University
- 期: 卷 68, 编号 3 (2023)
- 页面: 363-372
- 栏目: ФИЗИКОХИМИЯ РАСТВОРОВ
- URL: https://ter-arkhiv.ru/0044-457X/article/view/665290
- DOI: https://doi.org/10.31857/S0044457X22700167
- EDN: https://elibrary.ru/JFWMYN
- ID: 665290
如何引用文章
详细
The formation of mixed-ligand complexes of various compositions in the Zn–L-histidine (His)–L-ornithine (Orn) system has been studied by pH-metry, calorimetry, and NMR spectroscopy. The thermodynamic parameters (log K, ΔrG0 ΔrH, ΔrS) of the reactions of their formation at 298.15 K and ionic strength I = 0.5 (KNO3) have been calculated. Based on the comparative analysis of thermodynamic parameters, the most probable method for the coordination of amino acid residues in mixed complexes has been proposed.
作者简介
M. Nikitina
Krestov Institute of Solution Chemistry, Russian Academy of Sciences
Email: pyreu@mail.ru
153025, Ivanovo, Russia
M. Gruzdev
Krestov Institute of Solution Chemistry, Russian Academy of Sciences
Email: pyreu@mail.ru
153025, Ivanovo, Russia
D. Pyreu
Ivanovo State University
编辑信件的主要联系方式.
Email: pyreu@mail.ru
153025, Ivanovo, Russia
参考
- Yamauchi O., Odani A. // J. Chem. Soc., Dalton Trans. 2002. P. 3411. https://doi.org/10.1039/B202385G
- Yamauchi O., Odani A. // Inorg. Chim. Acta. 1985. V. 100. P. 165. https://doi.org/10.1016/S0020-1693(00)88304-8
- Chaga G.S. // J. Biochem. Biophys. Methods. 2001. V. 49. P. 313.
- Gaberc-Porekar V., Menart V. // J. Biochem. Biophys. Methods. 2001. V. 49. P. 335.
- Yang P., Zheng W., Hua Z. // Inorg. Chem. 2000. V. 39. № 24. P. 5454. https://doi.org/10.1021/ic0000146
- Raman N., Sakthivel A., Raja J.D. et al. // Russ. J. Inorg. Chem. 2008. V. 53. P. 213. https://doi.org/10.1134/S0036023608020113
- Demidov V.N., Kas’yanenko N.A., Antonov V.S. et al. // Russ. J. Gen. Chem. 2012. V. 82. P. 602. https://doi.org/10.1134/S1070363212030401
- Nair M.S., Arasu P.T., Sutha S.G. et al. // J. Indian Chem. Soc. 1998. V. 37A. P. 1084. http://nopr.niscair.res.in/handle/123456789/40379
- Nair M.S., Pillai M.S., Ramalingam S.K. // J. Chem. Soc., Dalton Trans. 1986. P. 1. https://doi.org/10.1039/DT9860000001
- Никитина М.Г., Пырэу Д.Ф. // Журн. неорган. химии. 2021. Т. 66. № 10. С. 1482. https://doi.org/10.1134/S0036023621100120
- Бородин В.А., Васильев В.П., Козловский Е.В. Математические задачи химической термодинамики. Новосибирск: Наука, 1985. С. 219.
- Pettit L.D. // Pure Appl. Chem. 1984. V. 56. P. 247. https://doi.org/10.1351/pac198456020247
- Yamauchi O., Odani A. // Pure Appl. Chem. 1996. V. 68. P. 469. https://doi.org/10.1351/pac199668020469
- Farkas E., Gergely A., Kas E. // J. Inorg. Nucl. Chem. 1981. V. 43. P. 1591. https://doi.org/10.1016/0022-1902(81)80343-0
- Sovago I., Kiss T., Gergely A. // J. Chem. Soc., Dalton Trans. 1978. P. 964.
- Васильев В.П. Термодинамические свойства растворов электролитов. М.: Высш. школа, 1982. С. 201.
- Гаравин В.А. // Дис. … канд. хим. наук. Иваново: ИХТИ, 1983.
- Gergely A., Farkas E., Nagypál I. et al. // J. Inorg. Nucl. Chem. 1978. V. 40. P. 1709. https://doi.org/10.1016/0022-1902(78)80366-2
- Amico P., Arena G., Daniele P. et al. // Inorg. Chem. 1981. V. 20. P. 772. https://doi.org/10.1021/ic50217a027
- Pyreu D., Alekseeva E., Gridchin S. // Thermochim. Acta. 2019. V. 680. P. 178335. https://doi.org/10.1016/j.tca.2019.178335
- Couves L.D., Hague D.N., Moreton A.D. // J. Chem. Soc., Dalton Trans. 1992. P. 217. https://doi.org/10.1039/DT9920000217
- Kiss T., Sovago I., Gergely A. // Pure Appl. Chem. 1991. V. 63. P. 597.
- Sjoberg S. // Pure Appl. Chem. 1997. V. 69. P. 1549.
- Zhou L., Li S., Su Y. et al. // J. Phys. Chem. B. 2013. V. 117. P. 8954. https://doi.org/10.1021/jp4041937
- Dalosto S.D., Calvo R., Pizarro J.L., Arriortua M.I. // J. Phys. Chem. A. 2001. V. 105. P. 1074. https://doi.org/10.1021/jp003167n
- Ferrer P., Jiménez-Villacorta F., Rubio-Zuazo J. et al. // J. Phys. Chem. B. 2014. V. 118. P. 2842. https://doi.org/10.1021/jp411655e
- Kistenmacher T.J. // Acta Crystallogr., Sect. B. 1972. V. 28. P. 1302. https://doi.org/10.1107/S0567740872004133
- Kretsinger R.H., Cotton F.A., Bryan R.F. // Acta Crystallogr. 1963. V. 16. P. 651 https://doi.org/10.1107/S0365110X63001705
- Harding M.M., Cole S.J. // Acta Crystallogr. 1963. V. 16. P. 643. https://doi.org/10.1107/S0365110X63001699
- Bottari E., Festa M. // J. Coord. Chem. 1990. V. 22. P. 237. https://doi.org/10.1080/00958979009408220
- Powell K., Brown P., Byrne R. et al. // Pure Appl. Chem. 2013. V. 85. P. 2249.
补充文件
