Изучение обратимой перегруппировки Хоторна между изомерными формами октадекагидроэйкозаборатного аниона методом динамической 11В ЯМР-спектроскопии
- Авторы: Донцова О.С.1, Матвеев Е.Ю.1,2, Ештукова-Щеглова Е.А.1, Ничуговский А.И.1, Голубев А.В.2, Привалов В.И.2, Авдеева В.В.2, Малинина Е.А.2, Жижин К.Ю.1,2, Кузнецов Н.Т.1,2
-
Учреждения:
- МИРЭА — Российский технологический университет, Институт тонких химических технологий имени М.В. Ломоносова
- Институт общей и неорганической химии им. Н.С. Курнакова
- Выпуск: Том 69, № 6 (2024)
- Страницы: 816-821
- Раздел: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://ter-arkhiv.ru/0044-457X/article/view/666491
- DOI: https://doi.org/10.31857/S0044457X24060033
- EDN: https://elibrary.ru/XTQACF
- ID: 666491
Цитировать
Аннотация
Методом 11В ЯМР-спектроскопии изучен процесс перегруппировки октадекагидроэйкозаборатного аниона [транс-B20H18]2– → [изо-B20H18]2– в различных растворителях (ацетонитрил, ДМФА, ДМСО) под действием УФ-облучения в динамике. Показано, что время полного изомерного перехода зависит от используемого растворителя. В ацетонитриле полная конверсия аниона [транс-B20H18]2– в изо-форму достигается за 1 ч, в ДМФА процесс занимает ⁓2 ч, в ДМСО – ⁓3 ч. Изучен обратный процесс перегруппировки макрополиэдрического бороводородного аниона [изо-B20H18]2– → [транс-B20H18]2– под действием температуры в ДМФА и показано, что увеличение времени реакции и повышение температуры реакционного раствора сопровождаются деградацией борного кластера.
Ключевые слова
Полный текст

Об авторах
О. С. Донцова
МИРЭА — Российский технологический университет, Институт тонких химических технологий имени М.В. Ломоносова
Email: avdeeva.varvara@mail.ru
Россия, Москва, пр-т Вернадского, 86, 119571
Е. Ю. Матвеев
МИРЭА — Российский технологический университет, Институт тонких химических технологий имени М.В. Ломоносова; Институт общей и неорганической химии им. Н.С. Курнакова
Email: avdeeva.varvara@mail.ru
Россия, Москва, пр-т Вернадского, 86, 119571; Москва, 119991
Е. А. Ештукова-Щеглова
МИРЭА — Российский технологический университет, Институт тонких химических технологий имени М.В. Ломоносова
Email: avdeeva.varvara@mail.ru
Россия, Москва, пр-т Вернадского, 86, 119571
А. И. Ничуговский
МИРЭА — Российский технологический университет, Институт тонких химических технологий имени М.В. Ломоносова
Email: avdeeva.varvara@mail.ru
Россия, Москва, пр-т Вернадского, 86, 119571
А. В. Голубев
Институт общей и неорганической химии им. Н.С. Курнакова
Email: avdeeva.varvara@mail.ru
Россия, Москва, 119991
В. И. Привалов
Институт общей и неорганической химии им. Н.С. Курнакова
Email: avdeeva.varvara@mail.ru
Россия, Москва, 119991
В. В. Авдеева
Институт общей и неорганической химии им. Н.С. Курнакова
Автор, ответственный за переписку.
Email: avdeeva.varvara@mail.ru
Россия, Москва, 119991
Е. А. Малинина
Институт общей и неорганической химии им. Н.С. Курнакова
Email: avdeeva.varvara@mail.ru
Россия, Москва, 119991
К. Ю. Жижин
МИРЭА — Российский технологический университет, Институт тонких химических технологий имени М.В. Ломоносова; Институт общей и неорганической химии им. Н.С. Курнакова
Email: avdeeva.varvara@mail.ru
Россия, Москва, пр-т Вернадского, 86, 119571; Москва, 119991
Н. Т. Кузнецов
МИРЭА — Российский технологический университет, Институт тонких химических технологий имени М.В. Ломоносова; Институт общей и неорганической химии им. Н.С. Курнакова
Email: avdeeva.varvara@mail.ru
Россия, Москва, пр-т Вернадского, 86, 119571; Москва, 119991
Список литературы
- Chamberland B.L., Muetterties E.L. // Inorg. Chem. 1964. V. 3. P. 1450. https://doi.org/10.1021/ic50020a025
- Hawthorne M.F., Pilling R.L. // J. Am. Chem. Soc. 1966. V. 88. P. 3873. https://doi.org/10.1021/ja00968a044
- Hawthorne M.F., Shelly K., Li F. // Chem. Commun. 2002. P. 547. https://doi.org/10.1039/B110076A
- Curtis Z.B., Young C., Dickerson R., Kaczmarczyk A. // Inorg. Chem. 1974. V. 13. P. 1760. https://doi.org/10.1021/ic50137a046
- Voinova V.V., Klyukin I.N., Novikov A.S. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 295. https://doi.org/10.1134/S0036023621030190
- Francés-Monerris A., Holub J., Roca-Sanjuán D. et al. // Phys. Chem. Lett. 2019. V. 10. P. 6202. https://doi.org/10.1021/acs.jpclett.9b02290
- Kaczmarczyk A., Dobrott R.D., Lipscomb W.N. // Proc. Nat. Acad. Sci. USA. 1962. V. 48. P. 729.
- Hawthorne M.F., Pilling R.L., Stokely P.F., Garrett P.M. // J. Am. Chem. Soc. 1963. V. 85. P. 3704.
- Li F., Shelly K., Knobler C.B., Hawthorne M.F. // Angew. Chem. Int. Ed. 1998. V. 37. P. 1868. https://doi.org/10.1002/(SICI)1521-3773(19980803) 37:13/14<1868::AID-ANIE1868>3.0.CO;2-Z
- Avdeeva V.V., Buzin M.I., Dmitrienko A.O. et al. // Chem. Eur. J. 2017. V. 23. P. 16819. https://doi.org/10.1002/chem.201703285.
- Avdeeva V.V., Malinina E.A., Zhizhin K.Y. et al. // J. Struct. Chem. 2019. V. 60. P. 692. https://doi.org/10.1134/S0022476619050020
- Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2020. V. 65. P. 335. https://doi.org/10.1134/S003602362003002X
- Avdeeva V.V., Buzin M.I., Malinina E.A. et al. // Cryst. Eng. Comm. 2015. V. 17. P. 8870. https://doi.org/10.1039/C5CE00859J
- Avdeeva V.V., Kubasov A.S., Golubev A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1209. https://doi.org/10.1134/S0036023623601502
- Li F., Shelly K., Knobler C.B., Hawthorne M.F. // Angew. Chem. Int. Ed. 1998. V. 37. P. 1865.
- Bernhardt E., Brauer D.J., Finze M., Willner H. // Angew. Chem. Int. Ed. 2007. V. 46. P. 2927. https://doi.org/10.1002/anie.200604077
- Hawthorne M.F., Pilling R.L., Garrett P.M. // J. Am. Chem. Soc. 1965. V. 87. P. 4740. https://doi.org/10.1021/ja00949a013
- Georgiev E.M., Shelly K., Feakes D.A. et al. // Inorg. Chem. 1996. V. 35. P. 5412. https://doi.org/10.1021/ic960171y
- Li F., Shelly K., Kane R.R. et al. // Angew. Chem. Int. Ed. 1996. V. 35. P. 2646. https://doi.org/10.1002/anie.199626461
- Montalvo S.J., Hudnall T.W., Feakes D.A. // J. Organomet. Chem. 2015. V. 798. P. 141. https://doi.org/10.1016/j.jorganchem.2015.05.064
- Smits J.P., Mustachio N., Newell B., Feakes D.A. // Inorg. Chem. 2012. V. 51. P. 8468. https://doi.org/10.1021/ic301044m
- Feakes D.A., Shelly K., Knobler C.B., Hawthorne M.F. // Proc. Nati. Acad. Sci. USA. 1994. V. 91. P. 3029. https://doi.org/10.1073/pnas.91.8.3029
- Feakes D.A., Waller R.C., Hathaway D.K., Morton V.S. // Proc. Nati. Acad. Sci. USA. 1999. V. 96. P. 6406. https://doi.org/10.1073/pnas.96.11.6406
- Shelly K., Feakes D.A., Hawthorne M.F. et al. // Proc. Nati. Acad. Sci. USA. 1992. V. 89. P. 9039. https://doi.org/10.1073/pnas.89.19.9039
- Waller R.C., Booth R.E., Feakes D.A. // J. Inorg. Biochem. 2013. V. 124. P. 11. https://doi.org/10.1016/j.jinorgbio.2013.03.007
- Avdeeva V.V., Kubasov A.S., Korolenko S.E. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1169. https://doi.org/10.1134/S0036023622080022
- Avdeeva V.V., Kubasov A.S., Nikiforova S.E. et al. // Russ. J. Inorg. Chem. 2023. V.68. P. 1406. https://doi.org/10.1134/S0036023623601794
- Il’inchik E.A., Polyanskaya T.M., Drozdova M.K. et al. // Russ. J. Gen. Chem. 2005. V. 75. P. 1545. https://doi.org/10.1007/s11176-005-0464-y
- Avdeeva V.V., Kubasov A.S., Korolenko S.E. et al. // Polyhedron. 2022. V. 217. P. 115740. https://doi.org/10.1016/j.poly.2022.115740
- Avdeeva V.V., Privalov V.I., Kubasov A.S. et al. // Inorg. Chim. Acta. 2023. V. 555. P. 121564. https://doi.org/10.1016/j.ica.2023.121564
- Miller H.C., Miller N.E., Muetterties E.L. // J. Am. Chem. Soc. 1963. V. 85. P. 3885. https://doi.org/10.1021/ja00906a033
- Marcus Y. // J. Phys. Chem. 1987. V. 91. P. 4422. https://doi.org/10.1016/S0167-7322(97)00090-1
- Gutmann V. // Coord. Chem. Rev. 1976. V. 18. P. 225. https://doi.org/10.1016/S0010-8545(00)82045-7
- Zhang J., Zhang M., Zhao Y. et al. // J. Comput. Chem. 2006. V. 27. P. 1817. https://doi.org/10.1002/jcc.20511
- Kubasov A.S., Novikov I.V., Starodubets P.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 984. https://doi.org/10.1134/S0036023622070130
- Avdeeva V.V., Malinina E.A., Vologzhanina A.V. et al. // Inorg. Chim. Acta. 2020. V. 509. P. 119693.
Дополнительные файлы
