Новый способ получения композита на основе монтмориллонита и оксида графена

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Предложен новый способ получения композита на основе оксида графена и монтмориллонита. Дана сравнительная характеристика скорости адсорбции для монтмориллонита, оксида графена и композита на их основе. Показано, что композит обладает лучшими адсорбционными свойствами по отношению к метиленовому голубому. Образцы исследованы при помощи ИК- и КР-спектроскопии, СЭМ, РФА, ТГА–ДТА. Полученный композиционный материал может найти широкое применение в качестве сорбентов для органических красителей в водной среде и органических растворителях.

Об авторах

Ю. В. Иони

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: Acidladj@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

И. В. Сапков

Институт общей и неорганической химии им. Н.С. Курнакова РАН; Московский государственный университет им. М.В. Ломоносова,
Физический факультет

Email: Acidladj@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31; Россия, 119991, Москва, Ленинские горы, 1, стр. 2

С. И. Ченцов

Физический институт им. П.Н. Лебедева РАН

Email: Acidladj@mail.ru
Россия, 119991, Москва, Ленинский пр-m, 53

Е. И. Ефремова

Институт общей и неорганической химии им. Н.С. Курнакова РАН; МИРЭА – Российский технологический университет. Институт тонких химических технологий
им. М.В. Ломоносова; Московский авиационный институт (национальный исследовательский университет)

Email: Acidladj@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31; Россия, 119571, Москва, пр-т Вернадского, 86; Россия, 125993, Москва, Волоколамское шоссе, 4

С. П. Губин

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: Acidladj@mail.ru
Россия, 119991, Москва, Ленинский пр-т, 31

Список литературы

  1. Luo P., Liu W., Zhu D. et al. // Colloids Surf., A: Physicochem. Eng. Asp. 2022. V. 655. № 130216. https://doi.org/10.1016/j.colsurfa.2022.130216
  2. Alkenani A., Saleh T.A. // J. Mol. Liq. 2022. V. 367. № 120291. https://doi.org/10.1016/j.molliq.2022.120291
  3. Mustafa B., Mehmood T., Wang Z. et al. // Chemosphere. 2022. V. 308. № 136333. https://doi.org/10.1016/j.chemosphere.2022.136333
  4. Lakshmy K.S., Lal D., Nair A. et al. // Polymers. 2022. V. 14. № 1604. https://doi.org/10.3390/polym14081604
  5. Panasyuk G.P., Kozerozhets I.V., Semenov E.A. et al. // Inorg. Mater. 2022. V. 55. № 9. P. 929. https://doi.org/10.1134/S0020168519090139
  6. Tarasova A.N. // J. Int. Pharm. Res. 2020. V. 12. P. 1169. https://doi.org/10.31838/ijpr/2020.SP2.142
  7. Makisha N. // Membranes. 2022. V. 12. № 9. P. 819. https://doi.org/10.3390/membranes12090819
  8. Kiselev A., Magaril E., Panepinto D. et al. // Sustainability. 2022. V. 13. № 12885. https://doi.org/10.3390/su132212885
  9. Ali M.E.A., Shahat A., Ayoub T.I. et al. // Biointerface Res. Appl. Chem. 2022. V. 12. № 6. P. 7556. https://doi.org/10.33263/BRIAC126.75567572
  10. Butusova O.A. // J. Int. Pharm. Res. 2020. V. 12. P. 1156. https://doi.org/10.31838/ijpr/2020.SP2.140
  11. Raj S., Singh H., Bhattacharya J. // Sci. Total Environ. 2023. V. 857. № 159464. https://doi.org/10.1016/j.scitotenv.2022.159464
  12. Chow M.K., Jee C.E., Yeap S.P. // Results in Engineering. 2022. V. 16. № 100682. https://doi.org/10.1016/j.rineng.2022.100682
  13. Bulychev N.A. // Nanosci. Technol. 2021. V. 12. № 3. P. 91. https://doi.org/10.1615/NanoSciTechnolIntJ.2021038033
  14. Memetova A., Tyagi I., Singh P. et al. // J. Clean. Prod. 2022. V. 379. № 134770. https://doi.org/10.1016/j.jclepro.2022.134770
  15. Liu R., Gao S., Peng Q. et al. // Fuel. 2022. V. 330. № 125567. https://doi.org/10.1016/j.fuel.2022.125567
  16. Jahan N., Roy H., Reaz A.H. et al. // J. Environ. Chem. Eng. 2022. V. 6. № 100239. https://doi.org/10.1016/j.cscee.2022.100239
  17. Kozerozhets I., Panasyuk G., Semenov A. et al. // Powder Technol. 2023. V. 413. № 118030. https://doi.org/10.1016/j.powtec.2022.118030
  18. Panasyuk G.P., Kozerozhets I.V., Semenov E.A. et al. // Inorg. Mater. 2019. V. 55. № 9. P. 920. https://doi.org/10.1134/S0020168519090127
  19. Senkina E.I., Buyakov A.S., Kazantsev S.O. et al. // Coatings. 2022. V. 12. № 1107. https://doi.org/10.3390/coatings12081107
  20. Bakina O.V., Glazkova E.A., Lozhkomoev A.S. et al. // Cellulose. 2018. V. 25. № 8. P. 4487. https://doi.org/10.1007/s10570-018-1895-z
  21. Zhang A., Liu J., Yang Y. et al. // Chem. Eng. J. 2023. V. 451. P. 138762. https://doi.org/10.1016/j.cej.2022.138762
  22. Nkwoada A., Oyedika G., Oguzie E. et al. // Inorg. Chem. Commun. 2022. V. 143. P. 109768. https://doi.org/10.1016/j.inoche.2022.109768
  23. Yang H., Li M., Pan L. et al. // Environ. Res. 2023. V. 216. № 114423. https://doi.org/10.1016/j.envres.2022.114423
  24. Akpotu S.O., Diagboya P.N., Lawal I.A. et al. // Chem. Eng. J. 2023. V. 216. № 114423. https://doi.org/10.1016/j.cej.2022.139771
  25. Nehra S., Dhillon A., Sharma R. et al. // Environ. Nanotechnol. Monit. Manag. 2022. V. 18. № 100690. https://doi.org/10.1016/j.enmm.2022.100690
  26. Song J., Zhang S., Li G. et al // J. Hazard. Mater. 2020. V. 391. https://doi.org/10.1016/j.jhazmat.2019.121692
  27. Molla A., Li Y., Mandal B. et al. // Appl. Surf. Sci. 2019. V. 464. P. 170. https://doi.org/10.1016/j.carbon.2019.10.003
  28. Reynosa-Martínez A.C., Tovar G.N., Gallegos W.R. et al. // J. Hazard. Mater. 2020. V. 384. https://doi.org/10.1016/j.jhazmat.2019.121440
  29. Ioni Y.V., Chentsov S.I., Sapkov I.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1711. https://doi.org/10.1134/S0036023622601076
  30. Hummers W.S., Offeman R.E. // J. Am. Chem. Soc. 1958. V. 80. P. 6. https://doi.org/10.1021/ja01539a017
  31. Zhang X., Yi H., Bai H. et al. // RSC Advances. 2017. V. 7. № 66. P. 41471. https://doi.org/10.1039/c7ra07816a
  32. Ioni Y.V., Groshkova Y.A., Gubin S.P. et al. // Nanotechnol. Russ. 2020. V. 15. P. 163. https://doi.org/10.1134/S1995078020020111
  33. Yang Z., Yuan Z., Shang Z. et al. // Appl. Clay Sci. 2020. V. 197. P. 105781. https://doi.org/10.1016/j.clay.2020.105781
  34. Kozerozhets I., Panasyuk G., Semenov E. et al. // Ceram. Int. 2022. V. 48. № 6. P. 7522. https://doi.org/10.1016/j.ceramint.2021.11.296
  35. Kozerozhets I., Panasyuk G., Semenov E. et al. // Ceram. Int. 2020. V. 46. № 18. P. 28961. https://doi.org/10.1016/j.ceramint.2020.08.067
  36. Kozerozhets I.V., Panasyuk G.P., Semenov E.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 9. P. 1384. https://doi.org/10.1134/S0036023620090090
  37. Block K.A., Trusiak A., Katz A. et al. // Appl. Clay Sci. 2015. V. 107. P. 173. https://doi.org/10.1016/j.clay.2015.01.021
  38. Ioni Y.V., Groshkova Y.A., Buslaeva E.Y. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 950. https://doi.org/10.1134/S0036023621060115
  39. Yang S., Chen Q., Shi M. et al. // Nanomaterials. 2020. V. 10. № 4. P. 770. https://doi.org/10.3390/nano10040770
  40. Danková Z., Mockovčiaková A., Dolinská S. // Desalination Water Treat. 2014. V. 52. P. 28. https://doi.org/10.1080/19443994.2013.814006
  41. Kuzenkova A.S., Romanchuk A.Y., Trigub A.L. et al. // Carbon. 2019. https://doi.org/10.1016/j.carbon.2019.10.003
  42. Yan H., Tao X., Yang Z. et al. // J. Hazard. Mater. 2014. V. 268. P. 191. https://doi.org/10.1016/j.jhazmat.2014.01.015

Дополнительные файлы


© Ю.В. Иони, И.В. Сапков, С.И. Ченцов, Е.И. Ефремова, С.П. Губин, 2023