Spin properties of silicon-germanium nanotubes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The dependence of the electronic structure on the chirality of single-walled SiGe nanotubes has been studied using the quantum chemistry methods. It has been shown that all nanotubes have a semiconductor type of band structure with a band gap Eg of about 0.35 eV, which distinguishes them from silicon analogues, which, depending on chirality, have semiconductor, semimetallic or metallic properties. This difference is due to the polarity of the Si-Ge chemical bond and, as a consequence, the influence of the antisymmetric component of the electronic potential on the band structure of the compounds. The valence band with a width of about 12 eV includes an inner band of predominantly s electrons of atoms with a width of 2 eV and a band of p electrons located above with a width of 8 eV. The energies of the spin-orbit gaps of the edges of the valence band and the conduction band differ significantly: for non-chiral nanotubes, they are equal to several tenths, and for chiral nanotubes, they are several meV. Using mechanical action, for example, by twisting a nanotube around its axis, it is possible to control the energies of spin-orbit gaps, which can find application in spintronics.

Sobre autores

Е. D’yachkov

Kurnakov Institute of General and Inorganic Chemistry

Email: p_dyachkov@rambler.ru
Rússia, Moscow

V. Merinov

Kurnakov Institute of General and Inorganic Chemistry; National Research Nuclear University “MEPhI”

Email: p_dyachkov@rambler.ru
Rússia, Moscow; Moscow

P. D’yachkov

Kurnakov Institute of General and Inorganic Chemistry

Autor responsável pela correspondência
Email: p_dyachkov@rambler.ru
Rússia, Moscow

Bibliografia

  1. Lin N., Wang L., Zhou J. et al. // J. Mater. Chem. A. 2015. V. 3. P. 11199. https://doi.org/10.1039/C5TA02216A
  2. Yu Y., Yue C., Sun S. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. P. 5884. https://doi.org/10.1021/am500782b
  3. Kennedy T., Bezuidenhout M., Palaniappan K. et al. // ACS Nano. 2015. V. 9. P. 7456. https://doi.org/10.1021/acsnano.5b02528
  4. Xiao W., Zhou J., Yu L. et al. // Angew. Chem. Int. Ed. 2016. V. 55. P. 7427. https://doi.org/10.1002/anie.201602653
  5. Seifert G., Kohler T., Hajnal Z. et al. // Solid State Commun. 2001. V. 119. P. 653. https://doi.org/10.1016/S0038-1098(01)00309-X
  6. Fagan S.B., Baierle R.J., Mota R. et al. // Phys. Rev. B. 2000. V. 61. P. 9994. https://doi.org/10.1103/PhysRevB.61.9994
  7. Herrera-Carbajal A., Rodrıguez-Lugo V., Hernandez-Avila J. et al. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 13075. https://doi.org/10.1039/D1CP00519G
  8. Rathi S.J., Ray A.K. // Chem. Phys. Lett. 2008. V. 466. P. 79. https://doi.org/10.1016/j.cplett.2008.10.031
  9. Liu X., Cheng D., Cao D. // Nanotechnology. 2009. V. 20. P. 315705. https://doi.org/10.1088/0957-4484/20/31/315705
  10. Pan L., Liu H., Wen Y. et al. // J. Comput. Theor. Nanosci. 2010. V. 7. P. 1935. https://doi.org/10.1166/jctn.2010.1563
  11. Wei J., Liu H.J., Tan X.J. et al. // RSC Adv. 2014. V. 4. P. 53037. https://doi.org/10.1039/C4RA07320G
  12. Dadrasi A., Albooyeh A., Mashhadzadeh A.H. // Appl. Surf. Sci. 2019. V. 498. P. 143867. https://doi.org/10.1016/j.apsusc.2019.143867
  13. Yang S.H. // Appl. Phys. Lett. 2020. V. 116. P. 120502. https://doi.org/10.1063/1.5144921
  14. Yang S.H., Naaman R., Paltiel Y. et al. // Nature Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9
  15. Michaeli K., Kantor-Uriel N., Naamanm R. et al. // Chem. Soc. Rev. 2016. V. 45. P. 6478. https://doi.org/10.1039/C6CS00369A
  16. Naaman R., Waldeck D.H. // Annu. Rev. Phys. Chem. 2015. V. 66. P. 263. https://doi.org/10.1146/annurev-physchem-040214121554
  17. Manchon H., Koo H.C., Nitta J. et al. // Nat. Mater. 2015. V. 14. P. 871. https://doi.org/10.1038/nmat4360
  18. Koo H.C., Kim S.B., Kim H. et al. // Adv. Mater. 2020. V. 32. P. 2002117. https://doi.org/10.1002/adma.202002117
  19. Bercioux D., Lucignano P. // Rep. Prog. Phys. 2015. V. 78. P. 106001. https://doi.org/10.1088/0034-4885/78/10/106001
  20. D’yachkov P.N., D’yachkov E.P. // Appl. Phys. Lett. 2022. V. 120. P. 173101. https://doi.org/10.1063/5.0086902
  21. D’yachkov P.N., Lomakin N.A. // Russ. J. Inorg. Chem. 2023. V. 68. № 4. P. 492. https://doi.org/10.1134/S0036023622602823
  22. D’yachkov E.P., Lomakin N.A., D’yachkov P.N. // Russ. J. Inorg. Chem. 2023. V. 68. № 7. P. 855. https://doi.org/10.1134/S0036023623600867
  23. D’yachkov P.N., D’yachkov E.P. // Russ. J. Inorg. Chem. 2023. V. 68. № 10. P. 1446. https://doi.org/10.1134/S0036023623601897
  24. Slater J.C. // Phys. Rev. 1937. V. 10. P. 846. https://doi.org/10.1103/PhysRev.51.846
  25. Andersen O.K. // Phys. Rev. B. 1975. V. 12. P. 864. https://doi.org/10.1103/PhysRevB.12.3060
  26. Koelling D.D., Arbman G.O. // J. Phys. F: Metal Physics. 1975. V. 5. P. 2041. https://doi.org/10.1088/0305-4608/5/11/016
  27. D’yachkov P.N., Makaev D.V. // Phys. Rev. B. 2007. V. 76. P. 19541. https://doi.org/10.1103/PhysRevB.76.195411
  28. D’yachkov P.N., Makaev D.V. // Int. J. Quantum Chem. 2016. V. 116. P. 316. https://doi.org/10.1002/qua.25030
  29. D’yachkov P.N. Quantum chemistry of nanotubes: electronic cylindrical Waves. London: CRC Press, 2019. 212 p.
  30. Дьячков П.Н. Электронные свойства и применение нанотрубок. М.: Лаборатория знаний, 2020. 491 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024