Low-temperature oleylamine-mediated hydrothermal synthesis of copper nanowires involving ascorbic acid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The low temperature hydrothermal synthesis of copper nanowires in the presence of oleylamine and ascorbic acid has been investigated. It was found that ascorbic acid can be effectively used as a “soft” reducing agent in the preparation of one-dimensional copper nanostructures, and by varying the synthesis conditions their microstructural properties can be modified, as indicated by the change in position of the characteristic absorption band using spectrophotometry in the visible region. The formation of nanowires with the desired crystal structure and the average size of the coherent scattering region, ranging from 25.7 to 28.8 nm, was confirmed by X-ray diffraction analysis. The microstructural features of the obtained materials were studied by scanning and transmission electron microscopy along with atomic force microscopy. In particular, it was found that reducing the synthesis temperature from 110 to 90°C and increasing the content of oleic acid in the reaction system allows to obtain copper nanowires with an average diameter of about 70.2 nm and an aspect ratio of about 285.

Full Text

Restricted Access

About the authors

N. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991

T. L. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991

Ya. R. Topalova

Kurnakov Institute of General and Inorganic
Chemistry of the Russian Academy of Sciences

Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991

Ph. Yu. Gorobtsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991

P. V. Arsenov

Moscow Institute of Physics and Technology (National Research University)

Email: n_simonenko@mail.ru
Russian Federation, Dolgoprudny, Moscow Region, 141701

E. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991

References

  1. Song J., Zeng H. // Angew. Chem. Int. Ed. 2015. V. 54. № 34. P. 9760. https://doi.org/10.1002/anie.201501233
  2. Hofmann A.I., Cloutet E., Hadziioannou G. // Adv. Electron. Mater. 2018. V. 4. № 10. https://doi.org/10.1002/aelm.201700412
  3. Huang Q., Zhu Y. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 51. P. 60736. https://doi.org/10.1021/acsami.1c14816
  4. Singh M., Rana S. // Mater. Today Commun. 2020. V. 24. P. 101317. https://doi.org/10.1016/j.mtcomm.2020.101317
  5. Naka S. / Transparent Electrodes for Organic Light‐emitting Diodes, in: Transparent Conduct. Mater., Wiley. 2018. p. 301–315. https://doi.org/10.1002/9783527804603.ch5_2
  6. Yan T., Yang W., Wu L. et al. // J. Mater. Sci. Technol. 2025. V. 209. P. 95. https://doi.org/10.1016/j.jmst.2024.05.016
  7. Guo C.F., Ren Z. // Mater. Today 2015. V. 18. № 3. P. 143. https://doi.org/10.1016/j.mattod.2014.08.018
  8. Ding Y., Xiong S., Sun L. et al. // Chem. Soc. Rev. 2024. V. 53. № 15. P. 7784. https://doi.org/10.1039/D4CS00080C
  9. Simonenko N.P., Simonenko T.L., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1301. https://doi.org/10.1134/S0036023624601697
  10. Simonenko N.P., Simonenko T.L., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1265. https://doi.org/10.1134/S0036023624601685
  11. Wang R., Ruan H. // J. Alloys Compd. 2016. V. 656. P. 936. https://doi.org/10.1016/j.jallcom.2015.09.279
  12. Arsenov P.V., Pilyushenko K.S., Mikhailova P.S. et al. // Nano-Structures & Nano-Objects 2025. V. 41. P. 101429. https://doi.org/10.1016/j.nanoso.2024.101429
  13. Umemoto Y., Yokoyama S., Motomiya K. et al. // Colloids Surf., A: Physicochem. Eng. Asp. 2022. V. 651. P. 129692. https://doi.org/10.1016/j.colsurfa.2022.129692
  14. Ulrich N., Schäfer M., Römer M. et al. // ACS Appl. Nano Mater. 2023. V. 6. № 6. P. 4190. https://doi.org/10.1021/acsanm.2c05232
  15. Patella B., Russo R.R., O’Riordan A. et al. // Talanta. 2021. V. 221. P. 121643. https://doi.org/10.1016/j.talanta.2020.121643
  16. Li Q., Fu S., Wang X. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 51. P. 57471. https://doi.org/10.1021/acsami.2c19531
  17. Zhao H.-X., Liu Y.-L., Wang G.-G. et al. // Energy Technol. 2021. V. 9. № 1. https://doi.org/10.1002/ente.202000744
  18. Zhang H., Tian Y., Wang S. et al. // Chem. Eng. J. 2021. V. 426. P. 131438. https://doi.org/10.1016/j.cej.2021.131438
  19. Khuje S., Sheng A., Yu J. et al. // ACS Appl. Electron. Mater. 2021. V. 3. № 12. P. 5468. https://doi.org/10.1021/acsaelm.1c00905
  20. Anand Omar R., Ranavare S.B., Verma N. // Chem. Eng. Sci. 2024. V. 299. P. 120489. https://doi.org/10.1016/j.ces.2024.120489
  21. Li K.-C., Chu H.-C., Lin Y. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 19. P. 12082. https://doi.org/10.1021/acsami.6b04579
  22. Scardaci V. // Appl. Sci. 2021. V. 11. № 17. P. 8035. https://doi.org/10.3390/app11178035
  23. Conte A., Rosati A., Fantin M. et al. // Mater. Adv. 2024. V. 5. № 22. P. 8836. https://doi.org/10.1039/D4MA00402G
  24. Zhao Y., Zhang Y., Li Y. et al. // New J. Chem. 2012. V. 36. № 5. P. 1161. https://doi.org/10.1039/c2nj21026f
  25. Haase D., Hampel S., Leonhardt A. et al. // Surf. Coatings Technol. 2007. V. 201. № 22–23. P. 9184. https://doi.org/10.1016/j.surfcoat.2007.04.014
  26. Yang X., Hu X., Wang Q. et al. // ACS Appl. Mater. Interfaces 2017. V. 9. № 31. P. 26468. https://doi.org/10.1021/acsami.7b08606
  27. Schmädicke C., Poetschke M., Renner L.D. et al. // RSC Adv. 2014. V. 4. № 86. P. 46363. https://doi.org/10.1039/C4RA04853A
  28. Inguanta R., Piazza S., Sunseri C. // Appl. Surf. Sci. 2009. V. 255. № 21. P. 8816. https://doi.org/10.1016/j.apsusc.2009.06.062
  29. Nam V., Lee D. // Nanomaterials. 2016. V. 6. № 3. P. 47. https://doi.org/10.3390/nano6030047
  30. Wang Y., Yin Z. // Appl. Sci. Converg. Technol. 2019. V. 28. № 6. P. 186. https://doi.org/10.5757/ASCT.2019.28.6.186
  31. Cuya Huaman J.L., Urushizaki I., Jeyadevan B. // J. Nanomater. 2018. V. 2018. P. 1. https://doi.org/10.1155/2018/1698357
  32. Fiévet F., Ammar-Merah S., Brayner R. et al. // Chem. Soc. Rev. 2018. V. 47. № 14. P. 5187. https://doi.org/10.1039/C7CS00777A
  33. Zhang J., Li X., Liu D. et al. // Nanoscale. 2019. V. 11. № 24. P. 11902. https://doi.org/10.1039/C9NR01470E
  34. Zheng Y., Chen N., Wang C. et al. // Nanomaterials. 2018. V. 8. № 4. P. 192. https://doi.org/10.3390/nano8040192
  35. Zhao S., Han F., Li J. et al. // Small. 2018. V. 14. № 26. https://doi.org/10.1002/smll.201800047
  36. Ravi Kumar D.V., Kim I., Zhong Z. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. № 40. P. 22107. https://doi.org/10.1039/C4CP03880K
  37. Won Y., Kim A., Yang W. et al. // NPG Asia Mater. 2014. V. 6. № 9. P. E132. https://doi.org/10.1038/am.2014.88
  38. Zhang Y., Guo J., Xu D. et al. // Nano Res. 2018. V. 11. № 7. P. 3899. https://doi.org/10.1007/s12274-018-1966-3
  39. Cui F., Dou L., Yang Q. et al. // J. Am. Chem. Soc. 2017. V. 139. № 8. P. 3027. https://doi.org/10.1021/jacs.6b11900
  40. Yokoyama S., Motomiya K., Jeyadevan B. et al. // J. Colloid Interface Sci. 2018. V. 531. P. 109. https://doi.org/10.1016/j.jcis.2018.07.036
  41. Liu X., Yang C., Yang W. et al. // J. Mater. Sci. 2021. V. 56. № 9. P. 5520. https://doi.org/10.1007/s10853-020-05617-z
  42. Lu P.-W., Jaihao C., Pan L.-C. et al. // Polymers (Basel). 2022. V. 14. № 16. P. 3369. https://doi.org/10.3390/polym14163369
  43. Luo M., Zhou M., Rosa da Silva R. et al. // Chem. Nano. Mat. 2017. V. 3. № 3. P. 190. https://doi.org/10.1002/cnma.201600337
  44. Deng D., Cheng Y., Jin Y. et al. // J. Mater. Chem. 2012. V. 22. № 45. P. 23989. https://doi.org/10.1039/c2jm35041f

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Visible and near infrared absorption spectra of samples 1–3, which are dispersed systems based on copper nanowires and isopropyl alcohol.

Download (14KB)
3. Fig. 2. X-ray diffraction patterns of films based on synthesized copper nanowires (samples 1 and 2).

Download (15KB)
4. Fig. 3. Microstructure of the obtained copper nanowires (a–c — sample 1, d–e — sample 2, g–i — sample 3; according to SEM data).

Download (77KB)
5. Fig. 4. Distribution of Cu nanowires 1–3 by diameter (according to SEM data).

Download (18KB)
6. Fig. 5. Microstructure of the obtained copper nanowires (a–b — sample 1, c–d — sample 2; according to TEM data).

Download (21KB)
7. Fig. 6. Microstructure and cross-sectional profiles (highlighted by a white line in the corresponding topographic image) for individual copper nanowires (a–c — sample 1, d–e — sample 2, g–i — sample 3; according to AFM data).

Download (89KB)

Copyright (c) 2025 Russian Academy of Sciences