Adsorbent based on activated carbon and iron oxide for removing tetracycline from liquid media

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Powders containing activated carbon (BAC) and iron oxide (FexOy) with different component ratios (80/20 and 20/80 wt. %) were synthesized by chemical co-precipitation of iron salts in the pores and on the surface of the carbon. To assess the morphology, texture and structure of the composites, laser diffraction, scanning electron microscopy, low-temperature adsorption-desorption of nitrogen vapor, and X-ray diffraction were used. It was revealed that the synthesized powders are mesoporous materials with a small contribution of macropores. The sorption properties of coal, iron oxide and iron-containing composites in relation to the drug compound tetracycline were studied. It was found that the sorption efficiency of antibiotic increases in the order Fe3O4 < BAC < BAC/FexOy-20/80 < BAC/FexOy-80/20. The kinetics of tetracycline adsorption on the powders under study was described by equations of pseudo-first and pseudo-second order reactions.

Full Text

Restricted Access

About the authors

O. V. Alekseeva

Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Email: avn@isc-ras.ru
Russian Federation, Ivanovo, 153045

D. N. Yashkova

Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Email: avn@isc-ras.ru
Russian Federation, Ivanovo, 153045

A. V. Noskov

Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: avn@isc-ras.ru
Russian Federation, Ivanovo, 153045

A. V. Agafonov

Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Email: avn@isc-ras.ru
Russian Federation, Ivanovo, 153045

N. N. Smirnov

Ivanovo State University of Chemistry and Technology

Email: avn@isc-ras.ru
Russian Federation, Ivanovo, 153000

References

  1. Ali A., Shah T., Ullah R. et al. // Front. Chem. 2021. V. 9. P. 629054. https://doi.org/10.3389/fchem.2021.629054
  2. Vargas-Ortiz J.R., Gonzalez C., Esquivel K. // Processes. 2022. V. 10. P. 2282. https://doi.org/10.3390/pr10112282
  3. Cai N., Larese-Casanova P. // Nanomaterials. 2020. V. 10. P. 213. https://doi.org/10.3390/nano10020213
  4. Толмачева В.В., Апяри В.В., Кочук Е.В. и др. // Журн. аналит. химии. 2016. Т. 71. № 4. С. 339. https://doi.org/10.7868/S0044450216040071
  5. Папынов Е.К., Номеровский А.Д., Азон А.С. и др. // Журн. неорган. химии. 2020. Т. 65. № 11. С. 1449. https://doi.org/10.31857/S0044457X2011015X
  6. Yew Y.P., Shameli K., Miyake M. et al. // Arab. J. Chem. 2020. V. 13. P. 2287. https://doi.org/10.1016/j.arabjc.2018.04.013
  7. Mashkoor F., Nasar A. // J. Magn. Magn. Mater. 2020. V. 500. P. 166408. https://doi.org/10.1016/j.jmmm.2020.166408
  8. Shukla S., Khan R., Daverey A. // Environ. Technol. Innov. 2021. V. 24. P. 101924. https://doi.org/10.1016/j.eti.2021.101924.
  9. Lu J., Jiao X., Chen D. et al. // J. Phys. Chem. 2009. V. 113. P. 4012. https://doi.org/10.1021/jp810583e
  10. Akiba Fexy J.D.H. // Int. J. Sci. Eng. Res. 2018. V. 9. № 7. P. 324.
  11. Roth H-C., Schwaminger S.P., Schindler M. et al. // J. Magn. Magn. Mater. 2015. V. 377. P. 81. https://doi.org/10.1016/j.jmmm.2014.10.074
  12. Dudchenko N., Pawar S., Perelshtein I. et al. // Materials. 2022. V. 15. P. 2601. https://doi.org/10.3390/ma15072601
  13. Шилова О.А., Николаев А.М., Коваленко А.С. и др. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 398. https://doi.org/10.31857/S0044457X20030137
  14. Santoso E., Ediati R., Kusumawati Y. et al. // Mater. Today Chem. 2020. V. 16. P. 100233. https://doi.org/10.1016/j.mtchem.2019.100233
  15. Liu Q., Cao X., Yue T. et al. // Environ. Sci. Pollut. Res. 2023. V. 30. P. 87185. https://doi.org/10.1007/s11356-023-28685-5
  16. Савицкая Т.А., Шахно Е.А., Гриншпан Д.Д. и др. // Высокомолек. соед. Серия А. 2019. Т. 61. № 3. С. 209. https://doi.org/10.1134/S230811201903012X
  17. Shan D., Deng S., Zhao T. et al. // J. Hazard. Mater. 2016. V. 305. P. 156. https://doi.org/10.1016/j.jhazmat.2015.11.047
  18. Koonaphapdeelert S., Moran J., Aggarangsi P., Bunkham A. // Energy Sustain. Devel. 2018. V. 43. P. 196. https://doi.org/10.1016/j.esd.2018.01.010
  19. Li R., Sun W., Xia L. et al. // Molecules. 2022. V. 27. P. 7980. https://doi.org/10.3390/molecules27227980
  20. Бондаренко Л.С., Магомедов И.С., Терехова В.А. и др. // Журн. прикл. химии. 2020. Т. 93. № 8. С. 1160. https://doi.org/10.31857/S0044461820080125
  21. Reguyal F., Sarmah A.K., Gao W. // J. Hazard. Mater. 2017. V. 321. P. 868. https://doi.org/10.1016/j.jhazmat.2016.10.006
  22. Daghrir R., Drogui P. // Environ. Chem. Lett. 2013. V. 11. P. 209. https://doi.org/10.1007/s10311-013-0404-8
  23. Avisar D., Primor O., Gozlan I. et al. // Water Air Soil Pollut. 2010. V. 209. P. 439. https://doi.org/10.1007/s11270-009-0212-8
  24. Sing K.S.W. // Adv. Colloid Interfacе Sci. 1998. V. 76–77. P. 3. https://doi.org/10.1016/S0001-8686(98)00038-4
  25. Aligizaki K.K. Pore Structure of Cement-Based Materials: Testing Interpretation and Requirements (Modern Concrete Technology). N. Y.: Taylor & Francis, 2005. 432 p.
  26. Guinier A. X-ray diffraction: in crystals, imperfect crystals, and amorphous bodies. N. Y.: Dover Books on Physics, 2001. 378 p.
  27. Гришин И.С., Смирнов Н.Н., Смирнова Д.Н. // Физика и химия обработки материалов. 2022. № 6. С. 33. https://doi.org/10.30791/0015-3214-2022-6-33-43
  28. Алексеева О.В., Смирнова Д.Н., Носков А.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 8. C. 1021. https://doi.org/10.31857/S0044457X23600299
  29. Rodrigues S.C., Silva M.C., Torres J.A. et al. // Water Air Soil Pollut. 2020. V. 231. № 294. https://doi.org/10.1007/s11270-020-04610-1
  30. Baabu P.R.S., Kumar H.K., Gumpu M.B. et al. // Materials. 2023. V. 16. № 1. P. 59. https://doi.org/10.3390/ma16010059
  31. Maity D., Agrawal D.C. // J. Magn. Magn. Mater. 2007. V. 308. № 1. P. 46. https://doi.org/10.1016/j.jmmm.2006.05.001
  32. Nazari P., Askari N., Setayesh S.R. // Chem. Eng. Commun. 2018. V. 207. P. 665. https://doi.org/10.1080/00986445.2019.1613233
  33. Алексеева О.В., Шипко М.Н., Смирнова Д.Н. и др. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2022. № 3. С. 23. https://doi.org/10.31857/S1028096022030025
  34. Chen K., Wang G.H., Li W.B. et al. // Chin. Chem. Lett. 2014. V. 25. № 11. P. 1455. https://doi.org/10.1016/j.cclet.2014.06.014
  35. Ho Y-S. // Scientometrics. 2004. V. 59. № 1. P. 171.
  36. Cazetta A.L., Vargas A.M.M., Nogami E.M. et al. // Chem. Eng. J. 2011. V. 174. № 1. P. 117. https://doi.org/10.1016/j.cej.2011.08.058
  37. Qiu H., Lv L., Pan B.-c. et al. // J. Zhejiang Univ. Sci. 2009. V. 10. P. 716. https://doi.org/10.1631/jzus.A0820524
  38. Lian L., Lv J., Wang X., Lou D. // J. Chromatogr. A. 2018. V. 1534. P. 1. https://doi.org/10.1016/j.chroma.2017.12.041
  39. Dai J., Meng X., Zhanga Y., Huang Y. // Bioresource Technol. 2020. V. 311. P. 123455. https://doi.org/10.1016/j.biortech.2020.123455
  40. Hoslett J., Ghazal H., Katsou E., Jouhara H. // Sci. Total Environ. 2021. V. 751. P. 141755. https://doi.org/10.1016/j.scitotenv.2020.141755
  41. Chen Y., Wang F., Duan L. et al. // J. Mol. Liq. 2016. V. 222. P. 487. http://dx.doi.org/10.1016/j.molliq.2016.07.090

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Particle size distribution for the samples of the investigated materials: 1 - BAU; 2 - FexOy; 3 - BAU/FexOy-20/80; 4 - BAU/FexOy-80/20.

Download (30KB)
3. Fig. 2. Electron micrographs of samples: a - BAU; b - FexOy; c - BAU/FexOy-80/20; d - BAU/FexOy-20/80.

Download (872KB)
4. Fig. 3. Nitrogen sorption-desorption isotherms and pore size distribution (on insets) for BAU (a), FexOy (b), BAU/FexOy-80/20 (c) and BAU/FexOy-20/80 (d) composites.

Download (105KB)
5. Fig. 4. Diffractograms of samples: 1 - BAU; 2 - FexOy; 3 - BAU/FexOy-80/20; 4 - BAU/FexOy-20/80.

Download (40KB)
6. Fig. 5. IR spectra of samples: 1 - BAU; 2 - FexOy; 3 - BAU/FexOy-80/20; 4 - BAU/FexOy-20/80.

Download (39KB)
7. Fig. 6. Kinetic curves of tetracycline sorption (C0 = 0.403 × 10-6 mol/L) on samples: 1 - FexOy; 2 - BAU; 3 - BAU/FexOy-20/80; 4 - BAU/FexOy-80/20.

Download (25KB)
8. Fig. 7. Kinetic curves of tetracycline sorption (C0 = 1.025 × 10-6 mol/L) on samples: 1 - FexOy; 2 - BAU; 3 - BAU/FexOy-20/80; 4 - BAU/FexOy-80/20.

Download (31KB)
9. Fig. 8. Adsorption kinetics of tetracycline on BAU/FexOy-80/20 composite at C0 = 1.025 × 10-6 mol/L. Experimental data (■) and different fitting curves are presented: 1 - pseudo-first order kinetic model; 2 - pseudo-second order kinetic model; 3 - diffusion model.

Download (29KB)

Copyright (c) 2025 Russian Academy of Sciences