BIMETALLIC Pt-Ag CATALYSTS SUPPORTED ON MESOPOROUS SILICON OXIDE MСM-41 IN THE 4-NITROPHENOL REDUCTION
- 作者: Savel’eva A.S.1, Evdokimova E.V.1, Mamontov G.V.1
-
隶属关系:
- National Research Tomsk State University
- 期: 卷 69, 编号 11 (2024)
- 页面: 2295-2305
- 栏目: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://ter-arkhiv.ru/0044-457X/article/view/676625
- DOI: https://doi.org/10.31857/S0044457X24110133
- EDN: https://elibrary.ru/JKGWRL
- ID: 676625
如何引用文章
详细
Mesoporous MCM-41 with a specific surface area of 1134 m2/g was synthesized. Based on it, supported mono- and bimetallic Pt-Ag catalysts with different metal ratios were prepared by incipient wetness impregnation. Using XRD and DRS methods, it was shown that after the reductive high-temperature treatment of Pt-Ag catalysts, metal nanoparticles in contact with Pt and Ag were formed on the surface. The TPR-H2 method showed an increase in the reactivity of bimetallic catalysts compared to monometallic catalysts due to the interaction of AgOx and PtOy centers. The catalysts were studied in the reduction reaction of 4-nitrophenol with sodium borohydride. A significant increase in the rate of reduction of 4-nitrophenol on bimetallic catalysts due to the synergistic effect of Pt and Ag was established.
作者简介
A. Savel’eva
National Research Tomsk State UniversityTomsk, Russia
E. Evdokimova
National Research Tomsk State UniversityTomsk, Russia
G. Mamontov
National Research Tomsk State University
Email: grigoriymamontov@mail.ru
Tomsk, Russia
参考
- Lu Ch., Wang X., Zhang J. et al. // Environ. Pollut. 2021. V. 283. P. 117132. https://doi.org/10.1016/j.envpol.2021.117132
- Pallares R.M., Karstens S.L., Arino T. et al. // ACS Applied Nano Materials. 2023. V. 6.№10. P. 8141. https://doi.org/10.1021/acsanm.3c01394
- Chatterjee S., Bhattacharya S.K. //ACSOmega. 2021. V. 6.№32. P. 20746. https://doi.org/10.1021/acsomega.1c00896
- Maric I., Drazic G., Radin E. et al. // Appl. Surf. Sci. 2023. V. 607. P. 155073. https://doi.org/10.1016/j.apsusc.2022.155073
- Chen H., Zhuang Q., Wang H. et al. // Colloids Surf., A. 2022. V. 649. P. 129459. https://doi.org/10.1016/j.colsurfa.2022.129459
- Tokazhanov G., Han S., Lee W. // Catal. Commun. 2021. V. 158. P. 106337. https://doi.org/10.1016/j.catcom.2021.106337
- Zhang Yu, Han H., Ma Zh. // Appl. Сatal. A. 2023. V. 665. P. 119377. https://doi.org/10.1016/j.apcata.2023.119377
- Filiz B.C. // Adv. Powder Technol. 2020. V. 31. № 9. P. 3845. https://doi.org/10.1016/j.apt.2020.07.026
- Menumerov E., Hughes R.A., Neretina S. // Nano Lett. 2016. V. 16.№12. P. 7791. https://doi.org/10.1021/acs.nanolett.6b03991
- Chernykh M., Mikheeva N., Zaikovskii V. et al. // Catalysts. 2020. V. 10. № 5. P. 580. doi: 10.3390/catal1005058
- Li W., Ge X., Zhang H. et al. // Inorg. Chem. Front. 2016. V. 3. P. 663. https://doi.org/10.1039/C6QI00002A
- Taratayko A., Larichev Yu., Zaikovskii V. et al. // Catal. Today. 2021. V. 375.№1. P. 576. https://doi.org/10.1016/j.cattod.2020.05.001
- Salaev M.A., Salaeva A.A., Kharlamova T.S. et al. // Appl. Catal., B. 2021. V. 295. P. 120286. https://doi.org/10.1016/j.apcatb.2021.120286
- Zuo Sh., Wang X., Yang P. et al. // Catal. Commun. 2017. V. 94. P. 52. https://doi.org/10.1016/j.catcom.2017.02.017
- Jeong Min Hye, So Jungseo, Oh Jinho et al. // Appl. Surf. Sci. 2023. V. 638. P. 158067. https://doi.org/10.1016/j.apsusc.2023.158067
- Виканова К.В., Редина Е.А., Капустин Г.И. // Журн. физ. химии. 2022. Т. 96.№1. С. 56. https://doi.org/10.31857/S0044453722010277
- Zhang Y., Zhou J. // J. Catal. 2021. V. 395. P. 445. https://doi.org/10.1016/j.jcat.2021.01.025
- Lin L., Yao S., Gao R. et al. // Nature Nanotechnology. 2019. V. 14. P. 354. https://doi.org/10.1038/s41565-019-0366-5
- Yu W., Porosoff M.D., Chen J.G. // Chem. Rev. 2012. V. 112.№11. P. 5780. https://doi.org/10.1021/cr300096b
- Эллерт О.Г., Цодиков М.В., Николаев С.А. и др. // Успехи химии. 2014. Т. 83.№8. С. 718. https://doi.org/10.1070/RC2014v083n08ABEH004432
- Caravaggio G., Nossova L., Turnbull M. // Catalysts. 2023. V. 13.№6. P. 926. https://doi.org/10.3390/catal13060926.
- Wisniewska J., Dziedzic I., Ziolek M. // RSC Adv. 2020. V. 10. P. 14570. https://doi.org/10.1039/D0RA01562H
- Wisniewska J., Ziolek M. // RSC Adv. 2017. V. 7. P. 9534. https://doi.org/10.1039/C6RA28365A
- Gonzalez Hernandez N.N., Contreras J. L., Pinto M. et al. // Catalysts. 2020. V. 10. P. 1212. doi: 10.3390/catal10101212.
- Intaphong P., Suebsom P., Phuruangrat A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1600. https://doi.org/10.1134/S0036023621100089
- Kharlamova T.S., Salina M.V., Svetlichnyi V.A. // Catal. Today. 2022. V. 384–386. P. 12. https://doi.org/10.1016/j.cattod.2021.08.031
- Mamontov G.V., Grabchenko M.V., Sobolev V.I. et al. // Appl. Catal., A. 2016. V. 528. P. 161. https://doi.org/10.1016/j.apcata.2016.10.005
- Zhang P., Liu B., Li Y. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 2036. https://doi.org/10.1134/S0036023621140096
- Mamontov G.V., Gorbunova A.S., Vyshegorodtseva E.V. et al. // Catal. Today. 2019. V. 333. P. 245. https://doi.org/10.1016/j.cattod.2018.05.015
- Martnez-Edo G., Balmori A., Ponton I. et al. // Catalysts. 2018. V. 8. P. 617. https://doi.org/10.3390/catal8120617
- Vyshegorodtseva E.V., Larichev Yu.V., Mamontov G.V. // J. Sol-Gel Sci. Tech. 2019. V. 92. № 2. P. 496. https://doi.org/10.1007/s10971-019-05034-y
- Ravikovitch P.I., Haller G.L., Neimark A.V. // J. Colloid Interface Sci. 1998. V. 76–77. P. 203. https://doi.org/10.1016/S0001-8686(98)00047-5
- Kolesnikov A.L., Uhlig H., Mollmer J. et al. // Microporous Mesoporous Mater. 2017. V. 240. P. 169. https://doi.org/10.1016/j.micromeso.2016.11.017
- Thommes M., Kaneko K., Neimark A.V. et al. // Pure Appl. Chem. 2015. V. 87.№9–10. P. 1051. https://doi.org/10.1515/pac-2014-1117
- Panecatl Bernal Y., Alvarado J., Rojas R. et al. // Optik. 2019. V. 185. P. 429. https://doi.org/10.1016/j.ijleo.2019.03.117
- Shinji K., Mijuki I., Asako T. et al. // Appl. Catal., A. 2012. V. 427–428. P. 85. https://doi.org/10.1016/j.apcata.2012.03.033
- Dutov V.V., Mamontov G.V., Zaikovskii V.I. et al. // Appl. Catal., B. 2018. V. 221. P. 598. http://doi.org/10.1016/j.apcatb.2017.09.051
- Бондарчук И.С., Мамонтов Г.В. // Кинетика и катализ. 2015. Т. 56.№3. С. 382. http://doi.org/10.7868/S0453881115030028
- Czaplinska J., Decyk P., Ziolek M. // Appl. Catal., A. 2015. V. 504. P. 361. https://doi.org/10.1016/j.apcata.2014.12.054
- Lee J., Jang E.J., Oh D.G. et al. // J. Catal. 2020. V. 385. P. 204. https://doi.org/10.1016/j.jcat.2020.03.019
- Barrales-Cortes C.A., Perez-Pastenes H., Pina-Victoria J.C. et al. // Top. Catal. 2020. V. 63.№5–6. P. 1. https://doi.org/10.1007/s11244-020-01312-0
- Smiechowicz I., Kocemba I., Rogowski J. et al. // Reac. Kinet. Mech. Cat. 2018. V. 124. P. 633. https://doi.org/10.1007/s11144-018-1383-3
- Hung Ch., Yeh Ch., Shih Ch. et al. // Catalysts. 2019. V. 9. P. 362. https://doi.org/10.3390/catal9040362
- Grabchenko M.V., Mamontov G.V., Zaikovskii V.I. et al. // Catal. Today. 2019. V. 333. P. 2. https://doi.org/10.1016/j.cattod.2018.05.014
- Zhang J., Gao K., Wang S. et al. // RSC Adv. 2017. V. 7. P. 6447. https://doi.org/10.1039/c6ra26142f
- Liao G., Gong Y., Zhong L. et al. // Nano Research. 2019. V. 12.№10. P. 2407. https://doi.org/10.1007/s12274-019-2441-5
- Varshney Sh., Bar-Ziv R., Zidki T. // ChemCatChem. 2020. V. 12. P. 4680. doi.org/10.1002/cctc.202000584
补充文件
