Heat Capacity And Thermal Expansion Of LaMgAl11O19

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The heat capacity of LaMgAl11O19 with a magnetoplumbite structure was measured in the temperature range of 7–1865 K using relaxation, adiabatic and differential scanning calorimetries. Obtained temperature dependences of the heat capacity are consistent based on adiabatic calorimetry data. Thermodynamic functions (entropy, enthalpy change, reduced Gibbs energy) in the range 0–1865 K are calculated from fitted values. Thermal expansion in the range of 300-1200 K was studied by high-temperature X-ray diffraction and the coefficient of thermal expansion of LaMgAl11O19 was calculated.

Full Text

Restricted Access

About the authors

P. G. Gagarin

Kurnakov Institute of General and Inorganic Chemistry of RAS

Author for correspondence.
Email: gagarin@igic.ras.ru
Russian Federation, Leninsky pr. 31, Moscow, 119991

A. V. Guskov

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Russian Federation, Leninsky pr. 31, Moscow, 119991

V. N. Guskov

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Russian Federation, Leninsky pr. 31, Moscow, 119991

G. E. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Russian Federation, Leninsky pr. 31, Moscow, 119991

K. S. Gavrcihev

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Russian Federation, Leninsky pr. 31, Moscow, 119991

References

  1. Lu H., Wang C.-A., Zhang C. // Ceram. Int. 2014. V. 40. P. 16273. https://doi.org/10.1016/j.ceramint.2014.07.064
  2. Iyi N., Takekawa S., Kimura S. // J. Solid State Chem. 1989. V. 83. P. 8. https://doi.org/10.1016/0022-4596(89)90048-0
  3. Gadow R., Lischka M. // Surf. Coat. Technol. 2002. V. 151–152. P. 392. https://doi.org/10.1016/S0257-8972(01)01642-5
  4. Bansal N.P., Zhu D. // Surf. Coat. Technol. 2008. V. 202. P. 2698. https://doi.org/10.1016/j.surfcoat.2007.09.048
  5. Zhang Y., Wang Y., Jarligo M.O. et al. // Opt. Lasers Eng. 2008. V. 46. P. 601. https://doi.org/10.1016/j.optlaseng.2008.04.001
  6. Friedrich C., Gadow R., T. Schirmer T. // J. Therm. Spray Technol. 2001. V. 10. P. 592. https://doi.org/10.1361/105996301770349105
  7. Liu Z.-G., Ouyang J.-H., Zhou Y. // J. Alloys Compd. 2009. V. 472. P. 319. https://doi.org/10.1016/j.jallcom.2008.04.042
  8. Liu Z.-G., Ouyang J.-H., Zhou Y. et al. // Philos. Mag. 2009. V. 89. P. 553. https://doi.org/10.1080/14786430802684126
  9. Lee K.N. 4.4.2. Protective coatings for gas turbine // https://www.netl.doe.gov/sites/default/files/gas-turbine-handbook/4-4-2.pdf
  10. Wang Y.-H., Ouyang J.-H., Liu Zh.-G. // J. Alloys Compd. 2009. V. 485. P. 734. https://doi.org/10.1016/j.jallcom.2009.06.068
  11. Chen X., Gu L., Zou B. et al. // Surf. Coat. Technol. 2012. V. 206. P. 2265. https://doi.org/10.1016/j.surfcoat.2011.09.076.
  12. Cao X.Q., Zhang Y.F., Zhang J.F. et al. // J. Eur. Ceram. Soc. 2008. V. 28. P. 1979. https://doi.org/10.1016/j.jeurceramsoc.2008.01.023
  13. Chen X., Zhao Y., Fan X. et al. // Surf. Coat. Technol. 2011. V. 205. P. 3293. https://doi.org/10.1016/j.surfcoat.2010.11.059
  14. Doležal V., Nádherný L., Rubešová K. et al. // Ceram. Int. 2019. V. 45. P. 11233. https://doi.org/10.1016/j.ceramint.2019.02.162
  15. Lefebvre D., Thery J., Vivien D. // J. Am. Ceram. Soc. 1986. V. 69(11). P. C-289. https://doi.org/10.1111/j.1151-2916.1986.tb07380.x
  16. Kahn A., Lejus A.M., Madsac M. et al. // J. Appl. Phys. 1981. V. 52. P. 6864. https://doi.org/10.1063/1.328680
  17. Lu X., Yuan J., Xu M. et al. // Ceram. Int. 2021. V. 47. P. 28892. https://doi.org/10.1016/j.ceramint.2021.07.050
  18. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68(11). С. 1607. Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2023. V. 68(11). P. 1599. https://doi.org/10.1134/S0036023623602064
  19. Lu H., Wang C., Zhang C., Tong S. // J. Europ. Ceram. Soc. 2015. V. 35. P. 1297. http://dx.doi.org/10.1016/j.jeurceramsoc.2014.10.030
  20. Friedrich C., Gadow R., Schirmer T. // Proc. of the 1st Int. Therm. Spray Conf. 2000. P. 1219. https://doi.org/10.31399/asm.cp.itsc2000p1219
  21. Guskov V.N., Tyurin A.V., Guskov A.V. et al. // Ceram. Int. 2020. V. 46. P. 12822. https://doi.org/10.1016/j.ceramint.2020.02.052
  22. Тюрин А.В., Хорошилов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2018. Т. 63(12). С. 1583. https://doi.org/10.1134/S0044457X18120218
  23. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  24. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  25. Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94(5). P. 573. https://doi.org/10.1515/pac-2019-0603
  26. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplement
Download (2MB)
3. Fig. 1. Diffractogram of the LaMgAl11O19 sample.

Download (204KB)
4. Fig. 2. Morphology of the LaMgAl11O19 surface after annealing at 1973 K.

Download (301KB)
5. Fig. 3. Consistent dependences of the LaMgAl11O19 heat capacity determined by relaxation (O), adiabatic (o) and differential scanning calorimetry (O) methods.

Download (141KB)
6. Fig. 4. Change in the parameters of the unit cell (a, c, V) LaMgAl11O19 in the range 298-1173 K.

Download (137KB)

Copyright (c) 2024 Russian Academy of Sciences