Three-dimensional metal-organic coordination polymers of Zn(II) based on 1,2-бис(4-pyridyl)ethylene and anions of iodoterephthalic and iodizophthalic acids

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

[Zn2(2-I-bdc)2bpen]n (1) and [Zn(I-ipa)bpen]n (2) are two new metal-organic frameworks based on zinc, 2-iodoterephthalate (2-I-bdc), 5-iodisophthalate (5-I-ipa), and 1,2-bis(4-pyridyl)ethylene (bpen). Using single-crystal X-ray diffraction, crystal structures of 1 and 2 were determined.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Zaguzin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: korobeynikov@niic.nsc.ru
Ресей, Novosibirsk, 630090

M. Bondarenko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: korobeynikov@niic.nsc.ru
Ресей, Novosibirsk, 630090

N. Korobeynikov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: korobeynikov@niic.nsc.ru
Ресей, Novosibirsk, 630090

A. Usoltsev

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: korobeynikov@niic.nsc.ru
Ресей, Novosibirsk, 630090

V. Fedin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: korobeynikov@niic.nsc.ru
Ресей, Novosibirsk, 630090

S. Adonin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; South Ural State University; Favorsky Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

Email: korobeynikov@niic.nsc.ru
Ресей, Novosibirsk, 630090; Chelyabinsk, 454080; Irkutsk, 664033

Әдебиет тізімі

  1. Yutkin M.P., Dybtsev D.N., Fedin V.P. // Russ. Chem. Rev. 2011. V. 80. № 11. P. 1009. https://doi.org/10.1070/RC2011v080n11ABEH004193
  2. Rubtsova I.K., Melnikov S.N., Shmelev M.A. et al. // Mendeleev Commun. 2020. V. 30. № 6. P. 722. https://doi.org/10.1016/j.mencom.2020.11.011
  3. Rasheed T., Anwar M.T. // Coord. Chem. Rev. 2023. V. 480. P. 215011. https://doi.org/10.1016/j.ccr.2022.215011
  4. Vasile Scaeteanu G., Maxim C., Badea M. et al. // Molecules. 2023. V. 28. № 3. P. 1132. https://doi.org/10.3390/molecules28031132
  5. Demakov P.A., Lazarenko V.A., Dorovatovskii P.V. et al. // J. Struct. Chem. 2023. V. 64. № 12. P. 2417. https://doi.org/10.1134/S0022476623120132
  6. Uvarova M.A., Lutsenko I.A., Shmelev M.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 9. P. 555. https://doi.org/10.1134/S1070328423600122
  7. Demakov P.A., Ovchinnikova A.A., Fedin V.P. // J. Struct. Chem. 2023. V. 64. № 2. P. 199. https://doi.org/10.1134/S002247662302004X
  8. Trofimova O.Y., Maleeva A.V, Arsenyeva K.V. et al. // J. Struct. Chem. 2023. V. 64. № 6. P. 1070. https://doi.org/10.1134/S0022476623060100
  9. Zav’yalova D.A., Kondratenko Y.A., Zolotarev A.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 8. P. 486. https://doi.org/10.1134/S1070328423600389
  10. Trofimova O.Y., Maleeva A.V., Arsen’eva K.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 5. P. 276. https://doi.org/10.1134/S1070328423600183
  11. Xu B., Yao W., Yu X. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 12. P. 771. https://doi.org/10.1134/S1070328423600316
  12. Mayorova E.A., Pak A.M., Nelyubina Y.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 3. P. 142. https://doi.org/10.1134/S1070328423700422
  13. Pak A.M., Zakharchenko E.N., Maiorova E.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 2. P. 97. https://doi.org/10.1134/S1070328422700257
  14. Ghanbari T., Abnisa F., Wan Daud W.M.A. // Sci. Total Environ. 2020. V. 707. P. 135090. https://doi.org/10.1016/J.SCITOTENV.2019.135090
  15. Sapianik A.A., Kovalenko K.A., Samsonenko D.G. et al. // Chem. Commun. 2020. V. 56. № 59. P. 8241. https://doi.org/10.1039/d0cc03227a
  16. Kovalenko K.A., Potapov A.S., Fedin V.P. // Russ. Chem. Rev. 2022. V. 91. № 4. https://doi.org/10.1070/RCR5026
  17. Kazemi A., Moghadaskhou F., Pordsari M.A. et al. // Sci. Rep. 2023. V. 13. № 1. https://doi.org/10.1038/s41598-023-47221-6
  18. Esfahani H.J., Shahhosseini S., Ghaemi A. // Sci. Rep. 2023. V. 13. № 1. https://doi.org/10.1038/s41598-023-44076-9
  19. Wang R., Xu H., Zhang K. et al. // J. Hazard. Mater. 2019. V. 364. P. 272. https://doi.org/10.1016/j.jhazmat.2018.10.030
  20. Artem’ev A.V., Fedin V.P. // Russ. J. Org. Chem. 2019. V. 55. № 6. P. 800. https://doi.org/10.1134/S1070428019060101
  21. Vlasenko E.S., Nikovskiy I.A., Nelyubina Y.V. et al. // Mendeleev Commun. 2022. V. 32. № 3. P. 320. https://doi.org/10.1016/j.mencom.2022.05.009
  22. Afkhami-Ardekani M., Naimi-Jamal M.R., Doaee S. et al. // Catalysts. 2023. V. 13. № 1. https://doi.org/10.3390/catal13010009
  23. Mohtasham H., Rostami M., Gholipour B. et al. // Chemosphere. 2023. V. 310. https://doi.org/10.1016/j.chemosphere.2022.136625
  24. Yu X., Ryadun A.A., Potapov A.S. et al. // J. Hazard. Mater. 2023. V. 452. P. 131289. https://doi.org/10.1016/j.jhazmat.2023.131289
  25. Yin H.Q., Yin X.B. // Acc. Chem. Res. 2020. V. 53. № 2. P. 485. https://doi.org/10.1021/acs.accounts.9b00575
  26. Hu Z., Deibert B.J., Li J. // Chem. Soc. Rev. 2014. V. 43. № 16. P. 5815. https://doi.org/10.1039/c4cs00010b
  27. Sohrabi H., Ghasemzadeh S., Ghoreishi Z. et al. // Mater. Chem. Phys. 2023. V. 299. https://doi.org/10.1016/j.matchemphys.2023.127512
  28. Sohrabi H., Maleki F., Khaaki P. et al. // Biosensors. 2023. V. 13. № 3. P. 347. https://doi.org/10.3390/bios13030347
  29. Dong W., Xiu C.F., Liu C.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 1973. https://doi.org/10.1134/S0036023622100618
  30. Dong Y.J., Fu W.W., Gui S.Y. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 10. P. 659. https://doi.org/10.1134/S1070328422100013
  31. Bazyakina N.L., Sokolov V.G., Moskalev M.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 7. P. 397. https://doi.org/10.1134/S1070328422600620
  32. Egambaram Dhivya, Saravanan S., Aman N. // Russ. J. Inorg. Chem. 2022. V. 67. № S2. P. S141. https://doi.org/10.1134/S0036023622602756
  33. Abasheeva K.D., Demakov P.A., Polyakova E.V. et al. // Nanomaterials. 2023. V. 13. № 20. P. 2773. https://doi.org/10.3390/nano13202773
  34. Sapianik A.A., Dudko E.R., Kovalenko K.A. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 12. P. 14768. https://doi.org/10.1021/acsami.1c02812
  35. Spek A.L. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 9. https://doi.org/10.1107/S2053229614024929
  36. Novikov A.S., Sakhapov I.F., Zaguzin A.S. et al. // J. Struct. Chem. 2022. V. 63. № 11. P. 1880. https://doi.org/10.1134/S002247662211018X
  37. Babarao R., Coghlan C.J., Rankine D. et al. // Chem. Commun. 2014. V. 50. № 24. P. 3238. https://doi.org/10.1039/C4CC00700J
  38. Norouzi F., Khavasi H.R. // New J. Chem. 2020. V. 44. № 21. P. 8937. https://doi.org/10.1039/D0NJ01149E
  39. Desiraju G.R., Ho P.S., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. № 8. P. 1711. https://doi.org/10.1351/PAC-REC-12-05-10
  40. Aliyarova I.S., Tupikina E.Y., Ivanov D.M. et al. // Inorg. Chem. 2022. V. 61. № 5. P. 2558. https://doi.org/10.1021/acs.inorgchem.1c03482
  41. Baykov S.V, Presnukhina S.I., Novikov A.S. et al. // Cryst. Growth Des. 2021. V. 21. № 4. P. 2526. https://doi.org/10.1021/acs.cgd.1c00184
  42. Bondarenko M.A., Zherebtsov D.A., Novikov A.S. et al. // J. Struct. Chem. 2023. V. 64. № 1. P. 112. https://doi.org/10.1134/S0022476623010079
  43. Shan H., Zhou L., Ji W. et al. // J. Phys. Chem. Lett. 2021. V. 12. № 44. P. 10808. https://doi.org/10.1021/acs.jpclett.1c03069
  44. Zang S.-Q., Dong M.-M., Fan Y.-J. et al. // Cryst. Growth Des. 2012. V. 12. № 3. P. 1239. https://doi.org/10.1021/cg201257j
  45. Zhang X., Zhang L., Wang M.-J. et al. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 9. P. 776. https://doi.org/10.1107/S2053229615014655
  46. Zaguzin A.S., Sukhikh T.S., Sakhapov I.F. et al. // Molecules. 2022. V. 27. № 4. https://doi.org/10.3390/molecules27041305
  47. Zaguzin A.S., Sukhikh T.S., Kolesov B.A. et al. // Polyhedron. 2022. V. 212. P. 115587. https://doi.org/10.1016/J.POLY.2021.115587
  48. Zaguzin A.S., Spiridonova D.V., Novikov A.S. et al. // Russ. Chem. Bull. 2023. V. 72. № 1. P. 177. https://doi.org/10.1007/s11172-023-3722-4
  49. Christine T., Tabey A., Cornilleau T. et al. // Tetrahedron. 2019. V. 75. № 52. P. 130765. https://doi.org/10.1016/J.TEТ. 2019.130765
  50. Wang H., Deng T., Cai C. // J. Fluor. Chem. 2014. V. 168. P. 144. https://doi.org/10.1016/j.jfluchem.2014.09.024
  51. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  52. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  53. Dolomanov O.V.O.V., Bourhis L.J.L.J., Gildea R.J.R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  54. Liu B., Zhou H.-F., Guan Z.-H. et al. // Green Chem. 2016. V. 18. № 20. P. 5418. https://doi.org/10.1039/C6GC01686C
  55. Hijikata Y., Horike S., Sugimoto M. et al. // Chem. – Eur. J. 2011. V. 17. № 18. P. 5138. https://doi.org/10.1002/chem.201003734
  56. Sánchez-Férez F., Rius-Bartra J.M., Ayllón J.A. et al. // Molecules. 2022. V. 27. № 4. P. 1365. https://doi.org/10.3390/molecules27041365
  57. Ejarque D., Sánchez-Férez F., Félez-Guerrero N. et al. // CrystEngComm. 2023. V. 25. № 18. P. 2739. https://doi.org/10.1039/d3ce00104k
  58. Dey A., Bairagi D., Biradha K. // Cryst. Growth Des. 2017. V. 17. № 7. P. 3885. https://doi.org/10.1021/acs.cgd.7b00502
  59. Zang S.Q., Fan Y.J., Li J. Bin et al. // Cryst. Growth Des. 2011. V. 11. № 8. P. 3395. https://doi.org/10.1021/cg200022j
  60. Liu D., Li H.X., Chen Y. et al. // Chin. J. Chem. 2008. V. 26. № 12. P. 2173. https://doi.org/10.1002/cjoc.200890387

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Experimental (red) and calculated from PCA data (black) diffractograms for 1.

Жүктеу (144KB)
3. Fig. 2. Structure of the biuclear building block in the structure of MOCP 1. All disordered iodine atoms with their corresponding occupancies are shown. Only one part of the disordered fragment of 1,2-bis(4-pyridyl)ethylene is shown. Hydrogen atoms are not shown.

Жүктеу (179KB)
4. Fig. 3. Structure of the building block in the structure of compound 2.

Жүктеу (132KB)
5. Fig. 4. Crystal packing in MOCP2 along axes a (a) and c(b).

Жүктеу (494KB)
6. Fig. 5. A fragment of the MKP 1 package with interlaced frames shown in blue and red. The I atoms are purple in color.

Жүктеу (595KB)
7. Supplementary 1
Жүктеу (150KB)
8. Supplementary 2
Жүктеу (110KB)

© Russian Academy of Sciences, 2024