Three-dimensional metal-organic coordination polymers of Zn(II) based on 1,2-бис(4-pyridyl)ethylene and anions of iodoterephthalic and iodizophthalic acids
- Авторлар: Zaguzin A.S.1, Bondarenko M.A.1, Korobeynikov N.A.1, Usoltsev A.N.1, Fedin V.P.1, Adonin S.A.1,2,3
-
Мекемелер:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- South Ural State University
- Favorsky Institute of Chemistry, Siberian Branch, Russian Academy of Sciences
- Шығарылым: Том 69, № 7 (2024)
- Беттер: 1015-1021
- Бөлім: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://ter-arkhiv.ru/0044-457X/article/view/666446
- DOI: https://doi.org/10.31857/S0044457X24070096
- EDN: https://elibrary.ru/XNNBCU
- ID: 666446
Дәйексөз келтіру
Аннотация
[Zn2(2-I-bdc)2bpen]n (1) and [Zn(I-ipa)bpen]n (2) are two new metal-organic frameworks based on zinc, 2-iodoterephthalate (2-I-bdc), 5-iodisophthalate (5-I-ipa), and 1,2-bis(4-pyridyl)ethylene (bpen). Using single-crystal X-ray diffraction, crystal structures of 1 and 2 were determined.
Негізгі сөздер
Толық мәтін

Авторлар туралы
A. Zaguzin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: korobeynikov@niic.nsc.ru
Ресей, Novosibirsk, 630090
M. Bondarenko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: korobeynikov@niic.nsc.ru
Ресей, Novosibirsk, 630090
N. Korobeynikov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: korobeynikov@niic.nsc.ru
Ресей, Novosibirsk, 630090
A. Usoltsev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: korobeynikov@niic.nsc.ru
Ресей, Novosibirsk, 630090
V. Fedin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: korobeynikov@niic.nsc.ru
Ресей, Novosibirsk, 630090
S. Adonin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; South Ural State University; Favorsky Institute of Chemistry, Siberian Branch, Russian Academy of Sciences
Email: korobeynikov@niic.nsc.ru
Ресей, Novosibirsk, 630090; Chelyabinsk, 454080; Irkutsk, 664033
Әдебиет тізімі
- Yutkin M.P., Dybtsev D.N., Fedin V.P. // Russ. Chem. Rev. 2011. V. 80. № 11. P. 1009. https://doi.org/10.1070/RC2011v080n11ABEH004193
- Rubtsova I.K., Melnikov S.N., Shmelev M.A. et al. // Mendeleev Commun. 2020. V. 30. № 6. P. 722. https://doi.org/10.1016/j.mencom.2020.11.011
- Rasheed T., Anwar M.T. // Coord. Chem. Rev. 2023. V. 480. P. 215011. https://doi.org/10.1016/j.ccr.2022.215011
- Vasile Scaeteanu G., Maxim C., Badea M. et al. // Molecules. 2023. V. 28. № 3. P. 1132. https://doi.org/10.3390/molecules28031132
- Demakov P.A., Lazarenko V.A., Dorovatovskii P.V. et al. // J. Struct. Chem. 2023. V. 64. № 12. P. 2417. https://doi.org/10.1134/S0022476623120132
- Uvarova M.A., Lutsenko I.A., Shmelev M.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 9. P. 555. https://doi.org/10.1134/S1070328423600122
- Demakov P.A., Ovchinnikova A.A., Fedin V.P. // J. Struct. Chem. 2023. V. 64. № 2. P. 199. https://doi.org/10.1134/S002247662302004X
- Trofimova O.Y., Maleeva A.V, Arsenyeva K.V. et al. // J. Struct. Chem. 2023. V. 64. № 6. P. 1070. https://doi.org/10.1134/S0022476623060100
- Zav’yalova D.A., Kondratenko Y.A., Zolotarev A.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 8. P. 486. https://doi.org/10.1134/S1070328423600389
- Trofimova O.Y., Maleeva A.V., Arsen’eva K.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 5. P. 276. https://doi.org/10.1134/S1070328423600183
- Xu B., Yao W., Yu X. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 12. P. 771. https://doi.org/10.1134/S1070328423600316
- Mayorova E.A., Pak A.M., Nelyubina Y.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 3. P. 142. https://doi.org/10.1134/S1070328423700422
- Pak A.M., Zakharchenko E.N., Maiorova E.A. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 2. P. 97. https://doi.org/10.1134/S1070328422700257
- Ghanbari T., Abnisa F., Wan Daud W.M.A. // Sci. Total Environ. 2020. V. 707. P. 135090. https://doi.org/10.1016/J.SCITOTENV.2019.135090
- Sapianik A.A., Kovalenko K.A., Samsonenko D.G. et al. // Chem. Commun. 2020. V. 56. № 59. P. 8241. https://doi.org/10.1039/d0cc03227a
- Kovalenko K.A., Potapov A.S., Fedin V.P. // Russ. Chem. Rev. 2022. V. 91. № 4. https://doi.org/10.1070/RCR5026
- Kazemi A., Moghadaskhou F., Pordsari M.A. et al. // Sci. Rep. 2023. V. 13. № 1. https://doi.org/10.1038/s41598-023-47221-6
- Esfahani H.J., Shahhosseini S., Ghaemi A. // Sci. Rep. 2023. V. 13. № 1. https://doi.org/10.1038/s41598-023-44076-9
- Wang R., Xu H., Zhang K. et al. // J. Hazard. Mater. 2019. V. 364. P. 272. https://doi.org/10.1016/j.jhazmat.2018.10.030
- Artem’ev A.V., Fedin V.P. // Russ. J. Org. Chem. 2019. V. 55. № 6. P. 800. https://doi.org/10.1134/S1070428019060101
- Vlasenko E.S., Nikovskiy I.A., Nelyubina Y.V. et al. // Mendeleev Commun. 2022. V. 32. № 3. P. 320. https://doi.org/10.1016/j.mencom.2022.05.009
- Afkhami-Ardekani M., Naimi-Jamal M.R., Doaee S. et al. // Catalysts. 2023. V. 13. № 1. https://doi.org/10.3390/catal13010009
- Mohtasham H., Rostami M., Gholipour B. et al. // Chemosphere. 2023. V. 310. https://doi.org/10.1016/j.chemosphere.2022.136625
- Yu X., Ryadun A.A., Potapov A.S. et al. // J. Hazard. Mater. 2023. V. 452. P. 131289. https://doi.org/10.1016/j.jhazmat.2023.131289
- Yin H.Q., Yin X.B. // Acc. Chem. Res. 2020. V. 53. № 2. P. 485. https://doi.org/10.1021/acs.accounts.9b00575
- Hu Z., Deibert B.J., Li J. // Chem. Soc. Rev. 2014. V. 43. № 16. P. 5815. https://doi.org/10.1039/c4cs00010b
- Sohrabi H., Ghasemzadeh S., Ghoreishi Z. et al. // Mater. Chem. Phys. 2023. V. 299. https://doi.org/10.1016/j.matchemphys.2023.127512
- Sohrabi H., Maleki F., Khaaki P. et al. // Biosensors. 2023. V. 13. № 3. P. 347. https://doi.org/10.3390/bios13030347
- Dong W., Xiu C.F., Liu C.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 1973. https://doi.org/10.1134/S0036023622100618
- Dong Y.J., Fu W.W., Gui S.Y. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 10. P. 659. https://doi.org/10.1134/S1070328422100013
- Bazyakina N.L., Sokolov V.G., Moskalev M.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. № 7. P. 397. https://doi.org/10.1134/S1070328422600620
- Egambaram Dhivya, Saravanan S., Aman N. // Russ. J. Inorg. Chem. 2022. V. 67. № S2. P. S141. https://doi.org/10.1134/S0036023622602756
- Abasheeva K.D., Demakov P.A., Polyakova E.V. et al. // Nanomaterials. 2023. V. 13. № 20. P. 2773. https://doi.org/10.3390/nano13202773
- Sapianik A.A., Dudko E.R., Kovalenko K.A. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 12. P. 14768. https://doi.org/10.1021/acsami.1c02812
- Spek A.L. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 9. https://doi.org/10.1107/S2053229614024929
- Novikov A.S., Sakhapov I.F., Zaguzin A.S. et al. // J. Struct. Chem. 2022. V. 63. № 11. P. 1880. https://doi.org/10.1134/S002247662211018X
- Babarao R., Coghlan C.J., Rankine D. et al. // Chem. Commun. 2014. V. 50. № 24. P. 3238. https://doi.org/10.1039/C4CC00700J
- Norouzi F., Khavasi H.R. // New J. Chem. 2020. V. 44. № 21. P. 8937. https://doi.org/10.1039/D0NJ01149E
- Desiraju G.R., Ho P.S., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. № 8. P. 1711. https://doi.org/10.1351/PAC-REC-12-05-10
- Aliyarova I.S., Tupikina E.Y., Ivanov D.M. et al. // Inorg. Chem. 2022. V. 61. № 5. P. 2558. https://doi.org/10.1021/acs.inorgchem.1c03482
- Baykov S.V, Presnukhina S.I., Novikov A.S. et al. // Cryst. Growth Des. 2021. V. 21. № 4. P. 2526. https://doi.org/10.1021/acs.cgd.1c00184
- Bondarenko M.A., Zherebtsov D.A., Novikov A.S. et al. // J. Struct. Chem. 2023. V. 64. № 1. P. 112. https://doi.org/10.1134/S0022476623010079
- Shan H., Zhou L., Ji W. et al. // J. Phys. Chem. Lett. 2021. V. 12. № 44. P. 10808. https://doi.org/10.1021/acs.jpclett.1c03069
- Zang S.-Q., Dong M.-M., Fan Y.-J. et al. // Cryst. Growth Des. 2012. V. 12. № 3. P. 1239. https://doi.org/10.1021/cg201257j
- Zhang X., Zhang L., Wang M.-J. et al. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 9. P. 776. https://doi.org/10.1107/S2053229615014655
- Zaguzin A.S., Sukhikh T.S., Sakhapov I.F. et al. // Molecules. 2022. V. 27. № 4. https://doi.org/10.3390/molecules27041305
- Zaguzin A.S., Sukhikh T.S., Kolesov B.A. et al. // Polyhedron. 2022. V. 212. P. 115587. https://doi.org/10.1016/J.POLY.2021.115587
- Zaguzin A.S., Spiridonova D.V., Novikov A.S. et al. // Russ. Chem. Bull. 2023. V. 72. № 1. P. 177. https://doi.org/10.1007/s11172-023-3722-4
- Christine T., Tabey A., Cornilleau T. et al. // Tetrahedron. 2019. V. 75. № 52. P. 130765. https://doi.org/10.1016/J.TEТ. 2019.130765
- Wang H., Deng T., Cai C. // J. Fluor. Chem. 2014. V. 168. P. 144. https://doi.org/10.1016/j.jfluchem.2014.09.024
- Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V.O.V., Bourhis L.J.L.J., Gildea R.J.R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- Liu B., Zhou H.-F., Guan Z.-H. et al. // Green Chem. 2016. V. 18. № 20. P. 5418. https://doi.org/10.1039/C6GC01686C
- Hijikata Y., Horike S., Sugimoto M. et al. // Chem. – Eur. J. 2011. V. 17. № 18. P. 5138. https://doi.org/10.1002/chem.201003734
- Sánchez-Férez F., Rius-Bartra J.M., Ayllón J.A. et al. // Molecules. 2022. V. 27. № 4. P. 1365. https://doi.org/10.3390/molecules27041365
- Ejarque D., Sánchez-Férez F., Félez-Guerrero N. et al. // CrystEngComm. 2023. V. 25. № 18. P. 2739. https://doi.org/10.1039/d3ce00104k
- Dey A., Bairagi D., Biradha K. // Cryst. Growth Des. 2017. V. 17. № 7. P. 3885. https://doi.org/10.1021/acs.cgd.7b00502
- Zang S.Q., Fan Y.J., Li J. Bin et al. // Cryst. Growth Des. 2011. V. 11. № 8. P. 3395. https://doi.org/10.1021/cg200022j
- Liu D., Li H.X., Chen Y. et al. // Chin. J. Chem. 2008. V. 26. № 12. P. 2173. https://doi.org/10.1002/cjoc.200890387
Қосымша файлдар
