Adsorption and retention patterns for halogen adamantanes on the graphite-like adsorbent Hypercarb under HPLC conditions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Thermodynamic characteristics of sorption (retention factors, heat and entropy factors of sorption) of various chlorine, bromine, and iodine derivatives of adamantanes from water-methanol eluent on the graphite-like material Hypercarb and octyl silica gel (SiO2–C8) are determined experimentally under HPLC conditions. Hypercarb is shown be characterized by the highest structural selectivity in HPLC with respect to stereoisomers of halogen adamantanes. It is established that the order of elution of isomeric chlorine, bromine, and iodine derivatives of adamantanes from the polar eluent medium on Hypercarb under HPLC fully coincides with the retention patterns of these compounds on columns with graphitized thermal soot in gas chromatography. The retention of the considered halogen adamantanes and halogenoarenes on Hypercarb is described by the adsorption mechanism of sorption, with the principal contribution to the retention being made by dispersive interactions of sorbate molecules with the adsorbent surface. The dependence of the heat and entropy factors of sorption on the composition and structure of halogen adamantanes on Hypercarb is noted to be described by the molecular polarizability and molecular site values of the sorbates and by the lipophilicity of the compounds in the case of sorption on SiO2–C8. It is concluded that the found regularities of halogen adamantane sorption under HPLC conditions allow referring Hypercarb and SiO2–C8 to sorbents with 2D- and 3D-types of structural selectivity, respectively.

全文:

受限制的访问

作者简介

S. Yashkin

Samara State Technical University; Samara Regional Center for Gifted Children

编辑信件的主要联系方式.
Email: snyashkin@mail.ru
俄罗斯联邦, Samara, 443100; Samara, 443016

E. Ryzhikhina

Samara State Technical University

Email: snyashkin@mail.ru
俄罗斯联邦, Samara, 443100

E. Yashkina

Samara Regional Center for Gifted Children

Email: snyashkin@mail.ru
俄罗斯联邦, Samara, 443016

D. Svetlov

Samara Region Testing Laboratory of the “Center for Laboratory Analysis and Technical Measurements in the Volga Federal District”

Email: snyashkin@mail.ru
俄罗斯联邦, Samara, 443093

参考

  1. Щербакова К.Д., Яшин Я.И. //100 лет хроматографии / Под. ред. Б.А. Руденко. М.: Наука, 2003. 670 с.
  2. Гончарова Е.Н., Статкус М.А., Цизин Г.И., Золотов Ю.А. // Журн. аналит. химии. 2020. Т. 75. № 4. С. 291. https://doi.org/10.1134/S1061934820040036
  3. Engewald W., Pörschmann J., Welsch T. // Chromatographia. 1990. V.30. № 9/10. P. 537. https://doi.org/10.1007/BF02269801
  4. Feltl L., Smolková E., Skurovcová M. // Coll. Czechoslov. Chem. Commun. 1979. V. 44. № 4. P. 1116. https://doi.org/10.1135/cccc19791116
  5. Яшкин С.Н., Новоселова О.В., Светлов Д.А. // Журн. физ. химии. 2008. Т. 82. № 5. С. 968. https://doi.org/10.1134/S0036024408050270
  6. Kiselev A.V., Nazarova V.I., Shcherbakova K.D. // Chromatographia. 1984. V. 18. № 4. P. 183. https://doi.org/10.1007/BF02276730
  7. Буряк А.К. // Успехи химии. 2002. Т. 71. № 8. С. 788. https://doi.org/10.1070/RC2002v071n08ABEH000711
  8. Son J.H., Rybolt T.R. // Graphene. 2013. V. 2. № 1. P. 18. http://dx.doi.org/10.4236/graphene.2013.21004
  9. Киселев А.В. Межмолекулярные взаимодействия в адсорбции и хроматографии. М.: Высшая школа, 1986. 360 с.
  10. Кудряшов С.Ю. // Журн. физ. химии. 2024. Т. 98. № 8. С. https://doi.org/10.1134/S0036024424700705
  11. Dolgonosov A.M. // J. Phys. Chem. B. 1998. V. 102. № 24. P. 4715. https://doi.org/10.1021/jp973218p
  12. Scott A.M., Gorb L., Burns E. et al. // J. Phys. Chem. C. 2014. V. 118. № 9. P. 4774. https://doi.org/10.1021/jp4121832
  13. Сережкин В.Н., Прокаева М.А., Пушкин Д.В. и др. // Журн. физ. химии. 2008. Т. 82. № 8. С. 1511. https://doi.org/10.1134/S0036024408080177)
  14. West C., Elfakir C., Lafosse M. // J. Chromatogr. A. 2010. V. 1217. № 19. P. 3201. https://doi.org/10.1016/j.chroma.2009.09.052
  15. Яшин Я.И., Яшин А.Я. // Рос. хим. журн. (Ж. Рос. хим. об-ва им. Д.И. Менделеева). 2003. Т. XLVII. № 1.
  16. Pereira L. // J. of Liquid Chromatography & Related Technologies. 2008. V. 31. № 11. P. 1687. https://doi.org/10.1080/10826070802126429
  17. Яшкин С.Н., Курбатова С.В., Буряк А.К. // Изв. РАН. Сер. хим. 2001. Т. 50. № 5. С. 792. https://doi.org/10.1023/A:1011350908009
  18. Яшкин С.Н., Мурашов Б.А., Климочкин Ю.Н. // Журн. физ. химии. 2011. Т. 85. № 4. С. 758. https://doi.org/10.1134/S0036024411040315
  19. Яшкин С.Н., Светлов Д.А., Мурашов Б.А. // Журн. прикл. химии. 2013. Т. 86. № 3. С. 463. https://doi.org/10.1134/S1070427213030245
  20. Яшкин С.Н., Дмитриев Д.Н., Яшкина Е.А. и др. // Изв. РАН. Сер. хим. 2022. Т. 71. № 9. С. 1878. https://doi.org/10.1007/s11172-022-3605-0
  21. Prŭšová D., Colin H., Guiochon G. // J. Chromatogr. A. 1982. V. 234. № 1. P. 1. https://doi.org/10.1016/S0021-9673(00)81776-8
  22. Яшкин С.Н., Соловова Н.В. // Журн. физ. химии. 2004. Т. 78. № 2. С. 344.
  23. Экспериментальные методы в адсорбции и молекулярной хроматографии / Под ред. Ю.С. Никитина и Р.С. Петровой. М.: Изд-во МГУ, 1990. 318 с.
  24. Шатц В.Д., Сахартова О.В. Высокоэффективная жидкостная хроматография: основы теории, методология, применение в лекарственной химии. Рига: Зинатне, 1988. 390 с.
  25. Калашникова Е.В., Лопаткин А.А. // Изв. РАН. Сер. хим. 1997. Т. 46. № 12. С. 2173. https://doi.org/10.1007/BF02495252
  26. Kalashnikova E.V., Kiselev A.V., Petrova R.S. et al. // Chromatographia. 1979. V. 12. № 12. P. 799. https://doi.org/10.1007/BF02260661
  27. Schröder, A., Klüppel, M., Schuster, R.H. // Kautschuk und Gummi Kunststoffe. 2000. V. 53. № 5. P. 257.
  28. Burkhard J., Vais J., Vodička L. et al. // J. Chromatogr. A. 1969. V. 42. № 1. P. 207. https://doi.org/10.1016/S0021-9673(01)80617-8
  29. Яшкин С.Н. Хроматографическое разделение и термодинамика сорбции производных адамантана: автореф. дис… докт. хим. наук. Саратов: СГУ, 2014. 50 с.
  30. Tanaka N., Tanigawa T., Kimata K. et al. // J. Chromatogr. A. 1991. V. 549. № 1. P. 29. https://doi.org/10.1016/S0021-9673(00)91416-X
  31. Tanaka N., Tokuda Y., Iwaguchi K. et al. // Ibid. 1982. V. 239. № 1. P. 761. https://doi.org/10.1016/S0021-9673(00)82036-1
  32. Löchmuller C.H., Wilder D.R. // J. Chromatog. Sci. 1979. V. 17. № 10. P. 575. https://doi.org/10.1093/chromsci/17.10.574
  33. Miyabe K., Suzuki M. // J. Chem. Eng. Japan. 1994. V. 27. № 6. P. 785. https://doi.org/10.1252/jcej.27.785
  34. Vailaya A., Horvath C. // J. Phys. Chem. B. 1996. V. 100. № 6. P. 2447. https://doi.org/10.1021/jp952285l
  35. Miyabe K., Guiochon G. // Anal. Chem. 2002. V. 74. № 23. P. 5982. https://doi.org/10.1021/ac0202233

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Chromatogram of separation of a model mixture of isomeric dibromoadamantanes on NF Hypercarb; PF — CH3OH–H2O (80:20) (vol. %), T = 318 K; elution mode — isocratic.

下载 (70KB)
3. Fig. 2. Schematic representation of the equilibrium orientations of isomeric molecules of cis-1,4- (5), trans-1,4- (6) and 1,3-dibromoadamantanes (4) during adsorption on the basal face of graphite.

下载 (75KB)
4. Fig. 3. Dependences of the heats of sorption of halogenated adamantanes on molecular polarizability: I — Hypercarb, CH3OH-H2O (80:20) (vol.%); II — Hypercarb, CH3OH-H2O (60:40) (vol.%); III — SiO2-C8, PF: CH3OH-H2O (60:40) (vol.%); IV — Carbopack C HT (GTS).

下载 (76KB)
5. Fig. 4. The relationship between the values ​​of –ΔU°i /(RT) and –Аi for the considered HPLC systems: I — Hypercarb, СН3ОН–Н2О (80:20) (vol.%); II — Hypercarb, СН3ОН–Н2О (60:40) (vol.%); III — SiO2–C8, PF: СН3ОН–Н2О (60:40) (vol.%) (Тav ​​= 318 K; the dotted line corresponds to the equality of the contributions of ΔU°i /(RTav) and Аi).

下载 (69KB)

版权所有 © Russian Academy of Sciences, 2025