Влияние структурной изомерии пиридинмонокарбоновых кислот на объемные свойства их буферных растворов

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Методом денсиметрии исследованы особенности межмолекулярных взаимодействий структурных изомеров пиридинмонокарбоновой кислоты (PA, NA, INA) в водных буферных растворах при изменении температуры от 288.15 К до 313.15 К. На основе экспериментальных значений плотности растворов определены кажущиеся молярные объемы пиколиновой (PA), никотиновой (NA) и изоникотиновой (INA) кислот в буферном растворе (рН 7.4), концентрационные зависимости которых носят линейный характер. Определены парциальные молярные объемы и расширяемости при бесконечном разбавлении, а также их производные по температуре, значения которых свидетельствуют о структурно-разрушающем поведении изомеров PyCOOH в буферных растворах. Выявлено, что подобное воздействие на структуру буферного раствора уменьшается в ряду PA→ NA→ INA, а буферный раствор INA относится к более структурированным системам среди исследуемых растворов.

Texto integral

Acesso é fechado

Sobre autores

Е. Тюнина

Институт химии растворов им. Г.А. Крестова, Российская академия наук

Autor responsável pela correspondência
Email: tey@isc-ras.ru
Rússia, 153045, Иваново

Г. Тарасова

Институт химии растворов им. Г.А. Крестова, Российская академия наук

Email: tey@isc-ras.ru
Rússia, 153045, Иваново

Bibliografia

  1. Кузьменок Н.М., Михаленок С.Г. Органическая химия. Гетероциклические соединения. Минск: изд-во БГТУ, 2015. 146 с.
  2. Тюкавкина Н.А., Бауков Ю.И., Зурабян С.Э. Биоорганическая химия. М.: «Гэотар-Медиа», 2011. 416 с.
  3. Органическая химия: Учебник для вузов / Под ред. В.П. Черных. Харьков: Изд-во НФаУ, 2007. 776 с.
  4. Lubicova L., Waisser K. // Ces. Slov Farm. 1997. V. 46. P. 99.
  5. Westermark K., Rensmo H., Lees A.C., Vos J.G., Siegbahn H. // J. Phys. Chem. 2002. V. 106B. P. 10108.
  6. Rao D.R.M., Rawat N., Manna D. et al. // J. Chem. Thermodynamics 2013. V. 58. P. 432.
  7. Abraham M.H., Acree Jr.W.E. // J. Chem. Thermodynamics. 2013. V. 61. P. 74.
  8. Seifriz I., Konzen M., Paula M.M.S. et al. // J. Inorg. Biochem. 1999. V. 76. P. 153.
  9. Ramesh G., Reddy B.V. // J. Mol. Struct. 2018. V. 1160. P. 271.
  10. Al-Saif F.A., Al-Humaidi J.Y., Binjawhar D.N. et al. // J. Mol. Struct. 2020. V. 1218. P. 128547.
  11. Swiderski G., Kalinowska M., Wilczewska A.Z. et al. // Polyhedron. 2018. V. 150. P. 97.
  12. Marinkoviсć A.D., Drmanić S.Ž., Jovanović B.Ž. et al. // J. Serb. Chem. Soc. 2005. V. 70. P. 557.
  13. Rao D.R.M., Rawat N., Sawant R.M. et al. // J. Chem. Thermodynamics. 2012. V. 55. P. 67.
  14. Gamov G.A., Kiselev A.N., Alexsandriiskii V.V. et al. // J. Mol. Liq. 2017. V. 242. P. 1148.
  15. Ashton L.A., Bullock J. // J. Chem. Soc., Faraday Trans. 1982. V. 1. P. 1177.
  16. Koczon P., Dobrowolski J.Cz., Lewandowski W., Mazurek A.P. // J. Mol. Struct. 2003. V. 655. P. 89.
  17. Han F., Chalikian T.V. // J. Am. Chem. Soc. 2003. V. 125. P. 7219.
  18. Kumar H., Singla M., Jindal R. // J. Chem. Thermodynamic. 2014. V. 70. P. 190.
  19. Taha M., Lee M.-J. // J. Chem. Thermodynamic. 2009. V. 41. P. 705.
  20. Franks F. Water: A comprehensive treatise. V. 3. New York: Plenum Press, 1973.
  21. Gurney R.W. Ionic processes in solution. New York: McGraw Hill, 1953.
  22. Hepler L.G. // Can. J. Chem. 1969. V. 47. P. 4613.
  23. Lytkin A.I., Badelin V.G., Krutova O.N. et al. // Russ. J. Gen. Chem. 2019. V. 89. P. 2235.
  24. Tyunina E.Yu., Badelin V.G., Mezhevoi I.N. // J. Chem. Thermodynamics. 2019. V. 131. P. 40.
  25. Васильев В.П., Бородин В.А., Козловский Е.В. Применение ЭВМ в химико-аналитических расчетах. М.: Высшая школа, 1993. 112 с. [V.P. Vasiliev, V.A. Borodin, E.V. Kozlovsky. Application of PC in chemical analytical calculations. Moscow: Vysshaya Shkola, 1993.]
  26. Meshkov A.N., Gamov G.A. // Talanta. 2019. V. 198. P. 200.
  27. Tyunina E.Yu., Krutova O.N., Lytkin A.I. et al. // J. Chem. Thermodynamics. 2022. V. 171. P. 106809.
  28. Millero F.J., Knox J.H. // J. Chem. Eng. Data 1973. V. 18. P. 407.
  29. Banipal T.S., Singh H., Banipal P.K. et al. // Thermochim. Acta 2013. V. 553. P. 31.
  30. Liu J.L., Hakin A.W., Hedwig G.R. // J. Chem. Thermodynamics 2006. V. 38. P. 1640.
  31. Banik I., Roy M.N. // J. Mol. Liq. 2012. V. 169. P. 8.
  32. Kumar H., Sheetal, Sharma S.K. // J. Solution Chem. 2016. V. 45. P. 1.
  33. Dhal K., Singh S., Talukdar M. // J. Mol. Liq. 2022. V. 361. P. 119578.
  34. Chakraborty N., Juglan K.C., Kumar H. // J. Mol. Liq. 2021. V. 332. P. 115869.
  35. Gupta J., Nain A.K. // J. Chem. Thermodynamics. 2020. V. 144. P. 106067.
  36. Ivanov E.V., Lebedeva E.Yu. // J. Mol. Liq. 2020. V. 310. P. 113134.
  37. Redlich O., Meyer D.M. // Chem. Rev. 1964. V. 64. P. 221.
  38. Masson D.O. // Philosoph. Magazine 1929. V. 8. P. 218.
  39. Robinson R.A., Green R.W. // J. Phys. Chem. 1961. V. 65. P. 1084.
  40. Dash J.K., Sahu M., Chakraborty M. et al. // J. Mol. Liq. 2000. V. 84. P. 215.
  41. Patyar P., Kaur G. // J. Solution Chem. 2022. V. 51. P. 58.
  42. Крумгальц Б.С., Гержберг Ю.И. и др. // Журн. физ. химии. 1971. Т. 45. С. 2352.
  43. Nain A.K., Neetu P.R. // J. Chem. Thermodynamics. 2013. V. 64. P. 172.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Rhys. 1. Diagrams of the molecular weight distribution of ionic forms of pyridine carboxylic acid isomers depending on the pH of an aqueous solution: INA (a), NA (B), PA (B) (at t = 298.15 k, I = 0).

Baixar (188KB)
3. Fig. 2. Concentration dependences of the apparent molar volumes (Vj) of picolinic (a), isonicotinic (b) and nicotinic (c) acids in an aqueous buffer solution at temperatures: 288.15 (1), 293.15 (2), 298.15 (3), 303.15 (4), 308.15 (5), 313.15 K (6).

Baixar (272KB)
4. Fig. 3. Temperature dependences of partial molar volumes of Voφ at infinite dilution for nicotinic (1), picolic (2) and isonicotinic (3) acids in an aqueous buffer solution (pH 7.4).

Baixar (64KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024