Современные подходы к переработке отработавших литий-ионных аккумуляторов
- Autores: Цивадзе А.Ю.1, Орыщенко А.С.2, Жилов В.И.1, Костикова Г.В.1, Бездомников А.А.1, Шаров В.Э.1, Покровский Ю.Г.2, Каштанов А.Д.2
-
Afiliações:
- Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
- НИЦ “Курчатовский институт” – ЦНИИ КМ “Прометей”
- Edição: Volume 60, Nº 5 (2024)
- Páginas: 540-550
- Seção: НОВЫЕ ВЕЩЕСТВА, МАТЕРИАЛЫ И ПОКРЫТИЯ
- URL: https://ter-arkhiv.ru/0044-1856/article/view/663957
- DOI: https://doi.org/10.31857/S0044185624050118
- EDN: https://elibrary.ru/MSYKNE
- ID: 663957
Citar
Resumo
В настоящем кратком обзоре рассмотрены основные подходы к переработке отработавших литий-ионных аккумуляторов. Приведено описание исходного сырья в зависимости от элементного состава катодного материала. Кратко описаны основные способы переработки аккумуляторов, разрабатываемые в настоящее время: пирометаллургический, гидрометаллургический и прямая переработка. Наиболее оптимальным признан гидрометаллургический метод. Для указанного процесса приведено описание основных технологических стадий: стадии предварительной обработки аккумуляторов, щелочной обработки мелкой фракции, представляющей собой смесь анодного и катодного материала, кислотного выщелачивания катодного материала и последующей переработки продукта выщелачивания с целью выделения ценных компонентов в индивидуальном виде.
Palavras-chave
Texto integral

Sobre autores
А. Цивадзе
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Autor responsável pela correspondência
Email: m-protect@mail.ru
Rússia, Ленинский пр-т, 31, корп. 4, Москва, 119991
А. Орыщенко
НИЦ “Курчатовский институт” – ЦНИИ КМ “Прометей”
Email: m-protect@mail.ru
Ilha Bouvet, Шпалерная ул., д. 49, Москва, 191015
В. Жилов
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: m-protect@mail.ru
Rússia, Ленинский пр-т, 31, корп. 4, Москва, 119991
Г. Костикова
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: m-protect@mail.ru
Rússia, Ленинский пр-т, 31, корп. 4, Москва, 119991
А. Бездомников
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: m-protect@mail.ru
Rússia, Ленинский пр-т, 31, корп. 4, Москва, 119991
В. Шаров
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: m-protect@mail.ru
Rússia, Ленинский пр-т, 31, корп. 4, Москва, 119991
Ю. Покровский
НИЦ “Курчатовский институт” – ЦНИИ КМ “Прометей”
Email: m-protect@mail.ru
Rússia, Шпалерная ул., д. 49, Москва, 191015
А. Каштанов
НИЦ “Курчатовский институт” – ЦНИИ КМ “Прометей”
Email: m-protect@mail.ru
Rússia, Шпалерная ул., д. 49, Москва, 191015
Bibliografia
- U.S. Geological Survey. Mineral Commodity Summaries 2024. 2024. 212 P.
- Tsivadze A.Y., Bezdomnikov A.A., Kostikova G.V. The Lithium Boom: Lithium Sources and Prospects for the Russian Lithium Industry // Geol. Ore Depos. 2023. V. 65. № 5. P. 463–468.
- Tsivadze A.Y. et al. Selective Extraction of Lithium from Mineral. Hydromineral, and Secondary Raw Materials // Her. Russ. Acad. Sci. 2023. V. 93. № 5. P. 267–274.
- Cell Database [Electronic resource]. URL: https://secondlifestorage.com/index.php?pages/cell-database/
- Wang X. et al. Economic and environmental characterization of an evolving Li-ion battery waste stream // J. Environ. Manage. 2014. V. 135. P. 126–134.
- Huang B. et al. Recycling of lithium-ion batteries: Recent advances and perspectives // J. Power Sources. 2018. V. 399. P. 274–286.
- Chen M. et al. Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries // Joule. 2019. V. 3. № 11. P. 2622–2646.
- Harper G. et al. Recycling lithium-ion batteries from electric vehicles // Nature. 2019. V. 575. № 7781. P. 75–86.
- Yao Y. et al. Hydrometallurgical Processes for Recycling Spent Lithium-Ion Batteries: A Critical Review // ACS Sustain. Chem. Eng. 2018. V. 6. № 11. P. 13611–13627.
- Sun H., Song Q., Xu Z. A method for using the residual energy in waste Li-ion batteries by regulating potential with the aid of overvoltage response // Proc. Natl. Acad. Sci. 2023. V. 120. № 14.
- Meshram P., Pandey B.D., Mankhand T.R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review // Hydrometallurgy. Elsevier B.V. 2014. V. 150. P. 192–208.
- Atia T.A. et al. Closed-loop hydrometallurgical treatment of end-of-life lithium ion batteries: Towards zero-waste process and metal recycling in advanced batteries // J. Energy Chem. 2019. V. 35. P. 220–227.
- Woehrle T., Kern R. Process for the safe shredding of lithium-ion batteries: pat. DE102009027179A1 USA. German. 2009.
- Wang Y. et al. Regeneration and characterization of LiNi0.8Co0.15Al0.05O2 cathode material from spent power lithium-ion batteries // Waste Manag. 2019. V. 95. P. 192–200.
- Kim S. et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling // J. Clean. Prod. Elsevier Ltd. 2021. V. 294. P. 126329.
- Song D. et al. Recovery and heat treatment of the Li(Ni1/3Co1/3Mn1/3)O2 cathode scrap material for lithium ion battery // J. Power Sources. 2013. V. 232. P. 348–352.
- Zhang X. et al. A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries // Waste Manag. 2014. V. 34. № 9. P. 1715–1724.
- Gaye N. et al. Alkaline Leaching of Metals from Cathodic Materials of Spent Lithium-Ion Batteries // Asian J. Appl. Chem. Res. 2019. P. 1–7.
- Sattar R. et al. Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries // Sep. Purif. Technol. 2019. V. 209. P. 725–733.
- Ebrahimzade H., Khayati G.R., Schaffie M. Leaching kinetics of valuable metals from waste Li-ion batteries using neural network approach // J. Mater. Cycles Waste Manag. 2018. V. 20. № 4. P. 2117–2129.
- Chen W.-S., Ho H.-J. Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods // Metals (Basel). 2018. V. 8. № 5. P. 321.
- Vieceli N. et al. Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite // Waste Manag. 2018. V. 71. P. 350–361.
- Lv W. et al. A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride // Waste Manag. 2018. V. 79. P. 545–553.
- Pagnanelli F. et al. Leaching of electrodic powders from lithium ion batteries: Optimization of operating conditions and effect of physical pretreatment for waste fraction retrieval // Waste Manag. 2017. V. 60. P. 706–715.
- Hu J. et al. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries // J. Power Sources. 2017. V. 351. P. 192–199.
- Liu P. et al. Recovering valuable metals from LiNixCoyMn1-x-yO2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching // J. Alloys Compd. 2019. V. 783. P. 743–752.
- Li L. et al. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant // J. Hazard. Mater. 2010. V. 176. № 1–3. P. 288–293.
- Zhang X. et al. Innovative Application of Acid Leaching to Regenerate Li(Ni 1/3 Co 1/3 Mn 1/3)O 2 Cathodes from Spent Lithium-Ion Batteries // ACS Sustain. Chem. Eng. 2018. V. 6. № 5. P. 5959–5968.
- Cai G. et al. Process Development for the Recycle of Spent Lithium Ion Batteries by Chemical Precipitation // Ind. Eng. Chem. Res. 2014. V. 53. № 47. P. 18245–18259.
- Zheng R. et al. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method // RSC Adv. 2016. V. 6. № 49. P. 43613–43625.
- Li H. et al. Recovery of Lithium, Iron, and Phosphorus from Spent LiFePO 4 Batteries Using Stoichiometric Sulfuric Acid Leaching System // ACS Sustain. Chem. Eng. 2017. V. 5. № 9. P. 8017–8024.
- Bian D. et al. A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers // Electrochim. Acta. 2016. V. 190. P. 134–140.
- Zhang J. et al. Sustainable and Facile Method for the Selective Recovery of Lithium from Cathode Scrap of Spent LiFePO 4 Batteries // ACS Sustain. Chem. Eng. 2019. V. 7. № 6. P. 5626–5631.
- Huang Y. et al. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process // J. Power Sources. 2016. V. 325. P. 555–564.
- Shin E.J. et al. A green recycling process designed for LiFePO 4 cathode materials for Li-ion batteries // J. Mater. Chem. A. 2015. V. 3. № 21. P. 11493–11502.
- Gao Y. et al. Opportunity and challenges in recovering and functionalizing anode graphite from spent lithium-ion batteries: A review // Environ. Res. 2024. V. 247. P. 118216.
- Yang Y. et al. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery // Waste Manag. 2019. V. 85. P. 529–537.
- Zhang Y. et al. Co9S8@carbon nanospheres as high-performance anodes for sodium ion battery // Chem. Eng. J. 2018. V. 343. P. 512–519.
- Zhang W. et al. Preparing graphene from anode graphite of spent lithium-ion batteries // Front. Environ. Sci. Eng. 2017. V. 11. № 5. P. 6.
- Kozhevnikova A. V. et al. Application of Hydrophobic Deep Eutectic Solvents in Extraction of Metals from Real Solutions Obtained by Leaching Cathodes from End-of-Life Li-Ion Batteries // Processes. 2022. V. 10. № 12. P. 2671.
- Milevskii N.A. et al. Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from hydrochloric acid solution using a menthol-based hydrophobic deep eutectic solvent // Hydrometallurgy. Elsevier B.V. 2022. V. 207. P. 105777.
- Dhiman S., Gupta B. Partition studies on cobalt and recycling of valuable metals from waste Li-ion batteries via solvent extraction and chemical precipitation // J. Clean. Prod. 2019. V. 225. P. 820–832.
- Cai C. et al. An ionic liquid extractant dissolved in an ionic liquid diluent for selective extraction of Li(I) from salt lakes // Desalination. Elsevier B. V. 2021. V. 509.
- Wang J. et al. Lithium Recovery from the Mother Liquor Obtained in the Process of Li 2 CO 3 Production // Ind. Eng. Chem. Res. American Chemical Society. 2019. V. 58. № 3. P. 1363–1372.
- Zhang L. et al. Lithium recovery from effluent of spent lithium battery r ecycling process using solvent extraction // J. Hazard. Mater. Elsevier. 2020. V. 398. P. 122840.
- Tsivadze A.Y. et al. A New Extraction System Based on Isopropyl Salicylate and Trioctylphosphine Oxide for Separating Alkali Metals // Molecules. 2022. V. 27. № 10. P. 3051.
- Bezdomnikov A.A. et al. Dialkyl(5-ethyl-2-hydroxyphenyl)phosphonates as extractants for the selective recovery of lithium from alkaline media // Desalination. 2024. V. 579. P. 117446.
- Патент на изобретение RU2784157C1. Способ селективного экстракционного извлечения лития из водного щелочного раствора, содержащего хлориды лития, натрия, калия и гидроксид натрия: № 2022115330: заяв. 07.06.2022: опубл. 23.11.2022 / Бездомников А.А., Костикова Г.В., Баулин Д.В., Демина Л.И., Баулин В.Е., Цивадзе А.Ю.
- Bezdomnikov A.A. et al. Liquid extraction of lithium using a mixture of alkyl salicylate and tri-n-octylphosphine oxide // Sep. Purif. Technol. 2023. V. 320. P. 124137.
- Niu Z. et al. Mechanism and process study of lithium extraction by 2-ethylhexyl salicylate extraction system // J. Clean. Prod. 2024. V. 446. P. 141351.
Arquivos suplementares
