TWO-PHOTON RESONANCE MECHANISM OF OPTICAL PUMPING OF THE 8.3-eV ISOMER 229mTh IN NEUTRAL ATOMS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The possibility of refining the energy of the nuclear isomer 229mTh with the energy of 8.36 eV, the most likely candidate for the role of a nuclear frequency standard, using resonant optical pumping is discussed. Attention is focused on the broadening of theresonance in order toreduce scanning time. The proposed twophoton method uses radical broadening of the isomer line due to mixing with an electronic transition. This method is not burdened by cross-section reduction, in contrast with internal-conversion-based resonance broadening or intended extra-broadening of the spectral line of a scanning laser. In the case under consideration, it turns out to be two orders of magnitude more effective. It applies to both ionized and neutral thorium atoms. The realization of the method supposes excitation of both the nucleus and the electron shell in the final state.

作者简介

F. Karpeshin

D.I. Mendeleyev Institute for Metrology (VNIIM)

Email: fkarpeshin@gmail.com
Saint-Petersburg, Russia

参考

  1. E. Peik, T. Schumm, M. S. Safronova, A. Palffy, J. Weitenberg, and P. G. Thirolf, Quantum Sci. Technol. 6, 034002 (2021).
  2. S. A. King, L. J. SpieB, P Micke, A. Wilzewski, T. Leopold, E. Benkler, R. Lange, N. Huntemann, A. Surzhykov, V. A. Yerokhin, J. R. Crespo Lopez-Urrutia, and P. O. Schmidt, Nature 611, 43 (2022).
  3. V. V. Flambaum, Phys. Rev. Lett. 97, 092502 (2006).
  4. D. Antypas, A. Banerjee, C. Bartram, M. Baryakhtar, J. Betz, J. J. Bollinger, C. Boutan, D. Bowring, D. Budker, D. Carney, G. Carosi, S. Chaudhuri, S. Cheong, A. Chou, M. D. Chowdhury, R. T. Co, et al., arXiv: 2203.14915 [hep-ex].
  5. E. Peik and M. Okhapkin, Comput. Rend. Phys. 16, 516 (2015).
  6. V. V. Flambaum and V. A. Dzuba, Can. J. Phys. 87, 25 (2009).
  7. J. Tiedau, M. V. Okhapkin, K. Zhang, et al., Phys. Rev. Lett. [in print].
  8. L. Von der Wense, B. Seiferle, M. Laatiaoui, J. B. Neumayr, H.-J. Maier, H.-F. Wirth, C. Mokry, J. Runke, K. Eberhardt, C. E. Dullmann, N. G. Trautmann, and P. G. Thirolf, Nature 47, 533 (2016).
  9. L. von der Wense and Z. Chuankun, Eur. Phys. J. Ser. D74, 146 (2020).
  10. F. F. Karpeshin and M. B. Trzhaskovskay, Phys. Rev. C76, 054313 (2007).
  11. В. И. Исаков, ЯФ 80, 605 (2017) [Phys. At. Nucl. 80, 1080 (2017)].
  12. S. Kraemer, J. Moens, M. Athanasakis-Kaklamanakis, S. Bara, K. Beeks, P. Chhetri, K. Chrysalidis, A. Claessens, T. E. Cocolios, J. G. M. Correia, H. De Witte, R. Ferrer, S. Geldhof, R. Heinke, N. Hosseini, M. Huyse, et al., Nature 617, 706 (2023).
  13. A. Palffy, J. Evers, and C. H. Keitel, Phys. Rev. C 77, 044602 (2008).
  14. A. Palffy, O. Buss, A. Hoefer, and H. A. Weidenmuller, Phys. Rev. C92, 044619 (2015).
  15. A. Ya. Dzyublik, G. Gosselin, V. Meot, and P. Morel, Europhys. Lett. 102, 62001 (2013).
  16. A. Ya. Dzyublik, JETP Lett. 92, 130 (2010).
  17. L. von der Wense, P. V. Bilous, B. Seiferle, S. Stellmer, J. Weitenberg, P. G. Thirolf, A. Palffy, and G. Kazakov, Eur. Phys. J. A 56, 176 (2020).
  18. Д. Ф. Зарецкий, Ф. Ф. Карпешин, ЯФ 29, 306 (1979) [Sov. J. Nucl. Phys. 29, 151 (1979)].
  19. Б. А. Зон, Ф. Ф. Карпешин, ЖЭТФ 97, 401 (1990) [B. A. Zon and F. F. Karpeshin, Sov. Phys. JETP 70, 224 (1990)]
  20. V. A. Krutov, Ann. Phys. (Leipzig) 21, 291 (1968).
  21. В. А. Крутов, Письма в ЖЭТФ 52, 1176 (1990) [JETP Lett. 52, 584 (1990)].
  22. D. Kekez, A. Ljubicic, K. Pisk, and B. A. Logan, Phys. Rev. Lett. 55, 1366 (1985).
  23. C. Rosel, F. F. Karpeshin, P. David, H. Hanscheid, J. Konijn, C. T. A. M. de Laat, H. Paganetti, F. Risse, B. Sabirov, L. A. Schaller, L. Schellenberg, W. Schrieder, and A. Taal, Z. Phys. A 345, 425 (1993).
  24. F. F. Karpeshin, M. R. Harston, F. Attallah, J. F. Chemin, J. N. Scheurer, I. M. Band, and M. B. Trzhaskovskaya, Phys. Rev. C 53, 1640 (1996).
  25. E.V. Tkalya, JETP Lett. 55, 216 (1992).
  26. E. V. Tkalya, Nucl. Phys. A 539, 209 (1992).
  27. P. V. Borisyuk, N. N. Kolachevsky, A. V. Taichenachev, E. V. Tkalya, I. Yu. Tolstikhina, and V. I. Yudin, Phys. Rev. C 100, 044306 (2019).
  28. A. Ya. Dzublik, Phys. Rev. C 106, 064608 (2022).
  29. S. G. Porsev, V. V. Flambaum, E. Peik, and Chr. Tamm, Phys. Rev. Lett. 105, 182501 (2010).
  30. R. A. Muller, A. V. Volotka, S. Fritzsche, and A. Surzhykov, Nucl. Instum. Methods B 408, 84 (2017).
  31. P. V. Bilous, H. Bekker, J. C. Berengut, B. Seiferle, L. von der Wense, P. G. Thirolf, T. Pfeifer, J. R. C. Lopez-Urrutia, and A. Palffy, Phys. Rev. Lett. 124, 192502 (2020).
  32. H. Xu, H. Tang, G. Wang, C. Li, B. Li, P. Cappellaro, and J. Li, Phys. Rev. A 108, L021502 (2023).
  33. L. Li, Z. Li, C. Wang, W.-T. Gan, X. Hua, and X. Tong, Nucl. Sci. Tech. 34, 24 (2023); https://doi.org/10.1007/s41365-023-01169-4
  34. N.-Q. Cai, G.-Q. Zhang, C.-B. Fu, and Y.-G. Ma, Nucl. Sci. Tech. 32, 59 (2021); https://doi.org/10.1007/s41365-021-00900-3
  35. L. von der Wense, B. Seiferle, S. Stellmer, J. Weitenberg, G. Kazakov, A. Palffy, and P. G. Thirolf, Phys. Rev. Lett. 119, 132503 (2017).
  36. F. F. Karpeshin, I. M. Band, and M. B. Trzhas-kovskaya, Nucl. Phys. A 654, 579 (1999).
  37. А. И. Ахиезер, В. Б. Берестецкий, Квантовая электродинамика (Москва, Наука, 1969).
  38. F. F. Karpeshin and L. F. Vitushkin, https://doi.org/10.48550/arXiv.2307.08711
  39. Ф. Ф. Карпешин, М. Б. Тржасковская, ЖЭТФ 165, 145 (2024).
  40. F. F. Karpeshin, S. Wycech, I. M. Band, M. B. Trzhas-kovskaya, M. Pfutzner, and J. Zylicz, Phys. Rev. C 57, 3085 (1998).
  41. M. G. Kozlov, A. V. Oleynichenko, D. Budker, D. A. Glazov, Y. V. Lomachuk, V. M. Shabaev, A. V. Titov, I. I. Tupitsyn, and A. V. Volotka, arXiv: 2308.05173.
  42. V. M. Shabaev, D. A. Glazov, A. M. Ryzhkov, C. Brandau, G. Plunien, W. Quint, A. M. Volchkova, and D. V. Zinenko, Phys. Rev. Lett. 128, 043001 (2022).
  43. I. M. Band and M. B. Trzhaskovskaya, At. Data Nucl. Data Tables 55, 43 (1993).
  44. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2023), NIST Atomic Spectra Database (ver. 5.11) [Online]; Available: https://physics.nist.gov/asd [2024, May 15], National Institute of Standards and Technology, Gaithersburg, MD, doi: https://doi.org/10.18434/T4W30F.
  45. C. Zhang, S. B. Schoun, C. M. Heyl, G. Porat, M. B. Gaarde, and J. Ye, Phys. Rev. Lett. 125, 093902 (2020).
  46. Ф. Ф. Карпешин, М. Б. Тржасковская, ЯФ 78, 765 (2015) [Phys. At. Nucl. 78, 715 (2015)].

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024