Degradation of skeletal muscle proteins in pink salmon Oncorhynchus gorbuscha (Salmonidae) during spawning migration

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In fish, skeletal muscle serves as a depot of plastic and energy substrates, which are actively consumed to maintain their viability during spawning migration and spawning. The content of water-soluble protein and its oxidized (carbonylated) fraction, as well as the activity of protein hydrolyzing enzymes (intracellular proteases) in skeletal muscle of pink salmon Oncorhynchus gorbuscha producers during the spawning migration from the White Sea to the Indera River were characterized. At the beginning of the sea-to-river migration, skeletal muscle of female pink salmon showed a significant increase in cathepsin D activity, which plays a major role in muscle protein degradation, without significant quantitative changes in the soluble protein fraction. However, an accumulation of carbonylated proteins, markers of oxidative stress, was observed during the spawning migration of pink salmon. It should be emphasized that the changes described are only characteristic of the white skeletal muscle and no changes were detected in the red muscle (which provides a long swimming effort due to aerobic metabolism) during the spawning migration.

全文:

受限制的访问

作者简介

N. Kantserova

Karelian Research Centre of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: nkantserova@yandex.ru

Institute of Biology

俄罗斯联邦, Petrozavodsk

D. Efremov

Karelian Research Centre of the Russian Academy of Sciences

Email: nkantserova@yandex.ru

Institute of Biology

俄罗斯联邦, Petrozavodsk

L. Lysenko

Karelian Research Centre of the Russian Academy of Sciences

Email: nkantserova@yandex.ru

Institute of Biology

俄罗斯联邦, Petrozavodsk

参考

  1. Алексеев М.Ю., Ткаченко А.В., Зубченко А.В. и др. 2019. Распространение, эффективность нереста и возможность промысла интродуцированной горбуши (Oncorhynchus gorbusha Walbaum) в реках Мурманской области // Рос. журн. биол. инвазий. Т. 12. № 1. С. 1–13.
  2. Глубоковский М.К. 1995. Эволюционная биология лососевых рыб. М.: Наука, 343 с.
  3. Городилов Ю.Н. 2003. О проблеме интродукции тихоокеанских лососей в моря европейской части России // Вестн. СПбГУ. Сер. 3. Вып. 4. № 27. С. 57–63.
  4. Дорофеева Е.А., Алексеев А.П., Зеленников О.В., Зеленков В.М. 2006. Дальневосточная горбуша в бассейне Белого моря (к 50-летию начала интродукции) // Рыб. хоз-во. № 6. С. 71–73.
  5. Немова Н.Н., Лысенко Л.А., Канцерова Н.П. 2016. Деградация белков скелетных мышц в процессах роста и развития лососевых рыб // Онтогенез. Т. 47. № 4. С. 197–208. https://doi.org/10.7868/S0475145016040066
  6. Немова Н.Н., Канцерова Н.П., Лысенко Л.А. 2021. Особенности белкового метаболизма в скелетных мышцах костистых рыб // Рос. физиол. журн. им. И.М. Сеченова. Т. 107. № 6–7. С. 730–754. https://doi.org/10.31857/S0869813921060091
  7. Павлов С.Д., Шарманкин В.А., Габаев Д.Д. 2014. Результаты акклиматизации дальневосточной горбуши в Европе и о стабилизации уловов // Рыб. хоз-во. № 2. С. 85–88.
  8. Ando S., Hatano M., Zama K. 1986. Protein degradation and protease activity of chum salmon (Oncorhynchus keta) muscle during spawning migration // Fish Physiol. Biochem. V. 1. № 1. P. 17–26. https://doi.org/10.1007/BF02309590
  9. Anson M.L. 1938. The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin // J. Gen. Physiol. V. 22. № 1. P. 79–89. https://doi.org/10.1085/jgp.22.1.79
  10. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. V. 72. № 1–2. P. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  11. Cook K.V., McConnachie S.H., Gilmour K.M. et al. 2011. Fitness and behavioral correlates of pre-stress and stress-induced plasma cortisol titers in pink salmon (Oncorhynchus gorbuscha) upon arrival at spawning grounds // Horm. Behav. V. 60. № 5. P. 489–497. https://doi.org/10.1016/j.yhbeh.2011.07.017
  12. Crossin G.T., Hinch S.G., Farrell A.P. et al. 2003. Pink salmon (Oncorhynchus gorbuscha) migratory energetics: response to migratory difficulty and comparisons with sockeye salmon (Oncorhynchus nerka) // Can. J. Zool. V. 81. № 12. P. 1986–1995. https://doi.org/10.1139/z03-193
  13. Cuervo A.M., Palmer A., Rivett A.J., Knecht E. 1995. Degradation of proteosomes by lysosomes in rat liver // Eur. J. Biochem. V. 227. № 3. P. 792–800. https://doi.org/10.1111/j.1432-1033.1995.0792p.x
  14. Enns D.L., Belcastro A.N. 2006. Early activation and redistribution of calpain activity in skeletal muscle during hindlimb unweighting and reweighting // Can. J. Physiol. Pharmacol. V. 84. № 6. P. 601–609. https://doi.org/10.1139/y06-013
  15. Florescu (Gune) I.E., Georgescu S.E., Dudu A. et al. 2021. Oxidative stress and antioxidant defense mechanisms in response to starvation and refeeding in the intestine of stellate sturgeon (Acipenser stellatus) juveniles from aquaculture // Animals. V. 11. № 1. Article 76. https://doi.org/10.3390/ani11010076
  16. Gallagher Z.S., Bystriansky J.S., Farrell A.P., Brauner C.J. 2013. A novel pattern of smoltification in the most anadromous salmonid: pink salmon (Oncorhynchus gorbuscha) // Can. J. Fish. Aquat. Sci. V. 70. № 3. P. 349–357. https://doi.org/10.1139/cjfas-2012-0390
  17. Gorissen M., Flik G. 2016. The endocrinology of the stress response in fish: an adaptation-physiological view // Fish Physiol. V. 35. P. 75–111. https://doi.org/10.1016/B978-0-12-802728-8.00003-5
  18. Johnstone J., Nash S., Hernandez E., Rahman M.S. 2019. Effects of elevated temperature on gonadal functions, cellular apoptosis, and oxidative stress in Atlantic sea urchin Arbacia punculata // Mar. Environ. Res. V. 149. P. 40–49. https://doi.org/10.1016/j.marenvres.2019.05.017
  19. Jürss K., Bastrop R. 1995. Amino acid metabolism in fish // Biochem. Mol. Biol. Fish. V. 4. P. 159–189. https://doi.org/10.1016/S1873-0140(06)80010-X
  20. Levine R.L., Garland D., Oliver C.N. et al. 1990. Determination of carbonyl content in oxidatively modified proteins // Methods Enzymol. V. 186. P. 464–478. https://doi.org/10.1016/0076-6879(90)86141-h
  21. Lu Y., Wu Z., Song Z. et al. 2016. Insight into the heat resistance of fish via blood: effects of heat stress on metabolism, oxidative stress and antioxidant response of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus // Fish Shellfish Immunol. V. 58. P. 125–135. https://doi.org/10.1016/j.fsi.2016.09.008
  22. Martin S.A.M., Blaney S., Bowman A.S., Houlihan D.F. 2002. Ubiquitin-proteasome-dependent proteolysis in rainbow trout (Oncorhynchus mykiss): effect of food deprivation // Pflügers Arch. — Eur. J. Physiol. V. 445. P. 257–266. https://doi.org/10.1007/s00424-002-0916-8
  23. Martin-Perez M., Fernandez-Borras J., Ibarz A. et al. 2012. New insights into fish swimming: a proteomic and isotopic approach in gilthead sea bream // J. Proteome Res. V. 11. № 7. P. 3533–3547. https://doi.org/10.1021/pr3002832
  24. McCormick S.D. 2012. Smolt physiology and endocrinology // Fish Physiol. V 32. P. 199–251. https://doi.org/10.1016/B978-0-12-396951-4.00005-0
  25. Miller K.M., Schulze A.D., Ginther N. et al. 2009. Salmon spawning migration: metabolic shifts and environmental triggers // Comp. Biochem. Physiol. Pt. D. Genom. Proteom. V. 4. № 2. P. 75–89. https://doi.org/10.1016/j.cbd.2008.11.002
  26. Mommsen T.P. 2004. Salmon spawning migration and muscle protein metabolism: the August Krogh principle at work // Comp. Biochem. Physiol. Pt. B. Biochem. Mol. Biol. V. 139. № 3. P. 383–400. https://doi.org/10.1016/j.cbpc.2004.09.018
  27. Mommsen T.P., French C.J., Hochachka P.W. 1980. Sites and patterns of protein and amino acid utilization during the spawning migration of salmon // Can. J. Zool. V. 58. № 10. P. 1785–1799. https://doi.org/10.1139/z80-246
  28. Morita K. 2022. Reverse migration of adult pink salmon (Oncorhynchus gorbuscha) to the sea after their return to fresh water // Environ. Biol. Fish. V. 105. № 12. P. 1825–1832. https://doi.org/10.1007/s10641-021-01139-y
  29. Navarro I., Gutiérrez J. 1995. Fasting and starvation // Biochem. Mol. Biol. Fish. V. 4. P. 393–434. https://doi.org/10.1016/S1873-0140(06)80020-2
  30. Noble J.E., Bailey M.J.A. 2009. Quantitation of Protein // Methods Enzymol. V. 463. P. 73–95. https://doi.org/10.1016/S0076-6879(09)63008-1
  31. Parvez S., Raisuddin S. 2005. Protein carbonyls: novel biomarkers of exposure to oxidative stress-inducing pesticides in freshwater fish Channa punctata (Bloch) // Environ. Toxicol. Pharmacol. V. 20. № 1. P. 112–117. https://doi.org/10.1016/j.etap.2004.11.002
  32. Salem M., Nath J., Rexroad C.E. et al. 2005. Identification and molecular characterization of the rainbow trout calpains (Capn1 and Capn2): their expression in muscle wasting during starvation // Comp. Biochem. Physiol. Pt. B. Biochem. Mol. Biol. V. 140. № 1. P. 63–71. https://doi.org/10.1016/j.cbpc.2004.09.007
  33. Salem M., Kenney P.B., Rexroad C.E., Yao J. 2006a. Microarray gene expression analysis in atrophying rainbow trout muscle: a unique nonmammalian muscle degradation model // Physiol. Genomics. V. 28. № 1. P. 33–45. https://doi.org/10.1152/physiolgenomics.00114.2006
  34. Salem M., Kenney P.B., Rexroad C.E., Yao J. 2006b. Molecular characterization of muscle atrophy and proteolysis associated with spawning in rainbow trout // Comp. Biochem. Physiol. Pt. D. Genom. Proteom. V. 1. № 2. P. 227–237. https://doi.org/10.1016/j.cbd.2005.12.003
  35. Salem M., Silverstein J., Rexroad C.E., Yao J. 2007. Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss) // BMC Genomics. V. 8. Article 328. https://doi.org/10.1186/1471-2164-8-328
  36. Sänger A.M., Stoiber W. 2001. Muscle fiber diversity and plasticity // Fish Physiol. V. 18. P. 187–250. https://doi.org/10.1016/S1546-5098(01)18008-8
  37. Shaliutina-Kolešová A., Kotas P., Štěrba J. et al. 2016. Protein profile of seminal plasma and functionality of spermatozoa during the reproductive season in the common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) // Mol. Reprod. Dev. V. 83. № 11. P. 968–982. https://doi.org/10.1002/mrd.22737
  38. Toyohara H., Ito K., Ando M. et al. 1991. Effect of maturation on activities of various proteases and protease inhibitors in the muscle of ayu (Plecoglossus altivelis) // Comp. Biochem. Physiol. Pt. B. Comp. Biochem. V. 99. № 2. P. 419–424. https://doi.org/10.1016/0305-0491(91)90064-k
  39. von der Decken A. 1992. Physiological changes of skeletal muscle by maturation-spawning of non-migrating female Atlantic salmon, Salmo salar // Ibid. V. 101. № 3. P. 299–301. https://doi.org/10.1016/0305-0491(92)90002-9
  40. Wendelaar Bonga S.E. 1997. The stress response in fish // Physiol. Rev. V. 77. № 3. P. 591–626. https://doi.org/10.1152/physrev.1997.77.3.591
  41. Yamashita M., Konagaya S. 1990. High activities of cathepsins B, D, H and L in the white muscle of chum salmon in spawning migration // Comp. Biochem. Physiol. Pt. B. Comp. Biochem. V. 95. № 1. P. 149–152. https://doi.org/10.1016/0305-0491(90)90262-r
  42. Yamashita M., Konagaya S. 1992. Differentiation and localization of catheptic proteinases responsible for extensive autolysis of mature chum salmon muscle (Oncorhynchus keta) // Ibid. V. 103. № 4. P. 999–1003. https://doi.org/10.1016/0305-0491(92)90229-K

补充文件

附件文件
动作
1. JATS XML
2. Scheme of the study area during high tide (a) and low tide (b), as well as the locations of catch points (⚪) of pink salmon Oncorhynchus gorbuscha spawners. River sections: 1 — pre-estuarine, 2 — estuarine, 3 — estuarine; (■) — land; water: (■) — fresh, (■) — salty, (■) — desalinated; (↙) — current direction. Scale: 0.5 km.

下载 (1000KB)

版权所有 © Russian Academy of Sciences, 2025