Аффинные якоря: сравнение популярных тегов в современной молекулярной биологии
- Авторы: Крюкова П.А.1, Киселева О.И.1, Курбатов И.Ю.1, Поверенная Е.В.1
-
Учреждения:
- Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича
- Выпуск: Том 144, № 4 (2024)
- Страницы: 402-413
- Раздел: Статьи
- Статья получена: 02.02.2025
- Статья опубликована: 22.07.2024
- URL: https://ter-arkhiv.ru/0042-1324/article/view/653188
- DOI: https://doi.org/10.31857/S0042132424040037
- EDN: https://elibrary.ru/PPQOLU
- ID: 653188
Цитировать
Полный текст
Аннотация
В функционировании живых систем ключевую роль играют межмолекулярные контакты, осуществляемые в том числе через белок-белковые взаимодействия. Одним из основных методов их изучения является аффинная очистка, сопряженная с масс-спектрометрией (AP-MS). Этот подход невозможен без совершенствования эпитопных меток, представляющих собой короткие генетические модификации белков, за которые впоследствии удается “выловить” целевые молекулы. Обзор направлен на сравнение самых популярных эпитопных меток, а также на обсуждение традиционных и инновационных исследований, в которых они применяются. Основная задача данной работы — оценить, насколько близко научное сообщество к созданию “оптимальной” метки, удовлетворяющей потребностям большинства исследователей, применяющих теги для решения широкого спектра молекулярно-биологических задач.
Ключевые слова
Полный текст

Об авторах
П. А. Крюкова
Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича
Email: inst@ibmc.msk.ru
Россия, Москва
О. И. Киселева
Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича
Email: inst@ibmc.msk.ru
Россия, Москва
И. Ю. Курбатов
Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича
Email: inst@ibmc.msk.ru
Россия, Москва
Е. В. Поверенная
Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича
Автор, ответственный за переписку.
Email: inst@ibmc.msk.ru
Россия, Москва
Список литературы
- De Almeida J.M., Moure V.R., Müller-Santos M. et al. Tailoring recombinant lipases: keeping the His-tag favors esterification reactions, removing it favors hydrolysis reactions // Sci. Rep. 2018. V. 8 (1). P. 10000.
- Arnau J., Lauritzen C., Petersen G.E., Pedersen J. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins // Protein Expr. Purif. 2006. V. 48 (1). P. 1–13.
- Aslantas Y., Surmeli N.B. Effects of N-terminal and C-terminal polyhistidine tag on the stability and function of the thermophilic P450 CYP119 // Bioinorg. Chem. Appl. 2019. V. 2019. P. 8080697.
- Ayoub N., Roth P., Ucurum Z. et al. Structural and biochemical insights into His-tag-induced higher-order oligomerization of membrane proteins by cryo-EM and size exclusion chromatography // J. Struct. Biol. 2023. V. 215 (1). P. 107924.
- Bonanno S.L., Sanfilippo P., Eamani A., et al. Constitutive and conditional epitope-tagging of endogenous G protein coupled receptors in Drosophila // bioRxiv. 2023.12.27.573472.
- Booth W.T., Schlachter C.R., Pote S. et al. Impact of an N-terminal polyhistidine tag on protein thermal stability // ACS Omega. 2018. V. 3 (1). P. 760–768.
- Brizzard B., Chubet R. Epitope tagging of recombinant proteins // Curr. Protoc. Neurosci. 2001. Ch. 5. Unit 5.8.
- Brown Z.P., Takagi J. The PA tag: a versatile peptide tagging system in the era of integrative structural biology // Adv. Exp. Med. Biol. 2018. V. 1105. P. 59–76.
- Bucher M.H., Evdokimov A.G., Waugh D.S. Differential effects of short affinity tags on the crystallization of Pyrococcus furiosus maltodextrin-binding protein // Acta Crystalogr. D. Diol. Crystalogr. 2002. V. 58 (3). P. 392–397.
- Costa S., Almeida A., Castro A. et al. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system // Front. Microbiol. 2014. V. 5. P. 63.
- Crespo P., Schuebel K.E., Ostrom A.A. et al. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product // Nature. 1997. V. 385. P. 169–172.
- DiCiommo D.P., Duckett A., Burcescu I. et al. Retinoblastoma protein purification and transduction of retina and retinoblastoma cells using improved alphavirus vectors // Invest. Ophthalmol. Vis. Sci. 2004. V. 45 (9). P. 3320–3329.
- Donaubauer E.M., Law N.C., Hunzicker-Dunn M.E. Follicle-stimulating hormone (FSH)-dependent regulation of extracellular regulated kinase (ERK) phosphorylation by the mitogen-activated protein (MAP) kinase phosphatase MKP3 // J. Biol. Chem. 2016. V. 291 (37). P. 19701–19712.
- Dunham W.H., Mullin M., Gingras A.-C. Affinity-purification coupled to mass spectrometry: basic principles and strategies // Proteomics. 2012. V. 12 (10). P. 1576–1590.
- Einhauer A., Jungbauer A. The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins // J. Biochem. Biophys. Methods. 2001. V. 49 (1–3). P. 455–465.
- Evan G.I., Lewis G.K., Ramsay G., Bishop J.M. Isolation of monoclonal antibodies specific for human c-Myc proto-oncogene product // Mol. Cell. Biol. 1985. V. 5 (12). P. 3610–3616.
- Fagbadebo F.O., Rothbauer U. Peptide-tag specific nanobodies for studying proteins in live cells // Methods Mol. Biol. 2022. V. 2446. P. 555–579.
- Field J., Nikawa J., Broek D. et al. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method // Mol. Cell. Biol. 1988. V. 8 (5). P. 2159–2165.
- Fodor B.D., Kovács Á.T., Csáki R. et al. Modular broad-host-range expression vectors for single-protein and protein complex purification // Appl. Environ. Microbiol. 2004. V. 70 (2). P. 712–721.
- Gao Y., Zhao S., Zhang R. et al. Immunosensor for realtime monitoring of the expression of recombinant proteins during bioprocess // Anal. Biochem. 2023. V. 665. P. 115069.
- Gloeckner C.J., Boldt K., Schumacher A. et al. A novel tandem affinity purification strategy for the efficient isolation and characterisation of native protein complexes // Proteomics. 2007. V. 7 (23). P. 4228–4234.
- Gloeckner C. J., Boldt K., Schumacher A. et al. Tandem affinity purification of protein complexes from mammalian cells by the Strep/FLAG (SF)-TAP tag // Methods Mol. Biol. 2009. V. 564. P. 359–372.
- Goldstein D.J., Toyama R., Dhar R., Schlegel R. The BPV-1 E5 oncoprotein expressed in schizosaccharomyces pombe exhibits normal biochemical properties and binds to the endogenous 16-kDa component of the vacuolar proton-ATPase // Virology. 1992. V. 190 (2). P. 889–893.
- Götzke H., Kilisch M., Martínez-Carranza M. et al. The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications // Nat. Commun. 2019. V. 10 (1). P. 4403.
- Gully D., Moinier D., Loiseau L., Bouveret E. New partners of acyl carrier protein detected in Escherichia coli by tandem affinity purification // FEBS Lett. 2003. V. 548 (1–3). P. 90–96.
- Hackbarth J.S., Lee S.-H., Meng X.W. et al. S-peptide epitope tagging for protein purification, expression monitoring, and localization in mammalian cells // Biotechniques. 2004. V. 37 (5). P. 835–839.
- Hammarberg B., Nygren P. A., Holmgren E. et al. Dual affinity fusion approach and its use to express recombinant human insulin-like growth factor II // PNAS USA. 1989. V. 86 (12). P. 4367–4371.
- Hatlem D., Trunk T., Linke D., Leo J.C. Catching a SPY: using the SpyCatcher-SpyTag and related systems for labeling and localizing bacterial proteins // Int. J. Mol. Sci. 2019. V. 20 (9). P. 2129.
- Hopp T.P., Prickett K.S., Price V.L. et al. A short polypeptide marker sequence useful for recombinant protein identification and purification // Nat. Biotechnol. 1988. V. 6 (10). P. 1204–1210.
- Hortua Triana M.A., Márquez-Nogueras K.M., Chang L. et al. Tagging of weakly expressed toxoplasma gondii calcium-related genes with high-affinity tags // J. Eukaryot. Microbiol. 2018. V. 65 (5). P. 709–721.
- Hernan R., Heuermann K., Brizzard B. Multiple epitope tagging of expressed proteins for enhanced detection // Biotechniques. 2000. V. 28 (4). P. 789–793.
- Huttlin E.L., Ting L., Bruckner R.J. et al. The BioPlex network: a systematic exploration of the human interactome // Cell. 2015. V. 162 (2). P. 425–440.
- Huttlin E.L., Bruckner R.J., Navarrete-Perea J. et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome // Cell. 2021. V. 184 (11). P. 3022–3040.e28.
- Ino Y., Yamaoka Y., Tanaka K. et al. Integrated tandem affinity protein purification using the polyhistidine plus extra 4 amino acids (HiP4) tag system // Proteomics. 2023. V. 23 (11). P. 2200334.
- Jenny R.J., Mann K.G., Lundblad R.L. A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa // Protein Expr. Purif. 2003. V. 31 (1). P. 1–11.
- Jo B.H. An intrinsically disordered peptide tag that confers an unusual solubility to aggregation-prone proteins // Appl. Environ. Microbiol. 2022. V. 88 (7). P. e0009722.
- Kim J.S., Raines R.T. Ribonuclease S-peptide as a carrier in fusion proteins // Protein Sci. 1993. V. 2 (3). P. 348–356.
- Kimple M.E., Brill A.L., Pasker R.L. Overview of affinity tags for protein purification // Curr. Protoc. Protein Sci. 2013. V. 73. P. 9.9.1– 9.9.23.
- Kinrade B., Davies P.L., Vance T.D.R. Bacterial sugar-binding protein as a one-step affinity purification tag on dextran-containing resins // Protein Expr. Purif. 2020. V. 168. P. 105564.
- Kong Z., Xiong X., Wu C., Pan W. High-level expression of anti FLAG tag antibody in plants // Sheng Wu Gong Cheng Xue Bao. 2024. V. 40 (1). P. 269–279.
- Kosobokova E.N., Skrypnik K.A., Kosorukov V.S. Overview of fusion tags for recombinant proteins // Biochemistry (Mosc). 2016. V. 81 (3). P. 187–200.
- Krupka M., Masek J., Barkocziova L. et al. The position of His-tag in recombinant OspC and application of various adjuvants affects the intensity and quality of specific antibody response after immunization of experimental mice // PLoS One. 2016. V. 11 (2). P. e0148497.
- Lee T.H., Kim K.S., Kim J.H. et al. Novel short peptide tag from a bacterial toxin for versatile applications // J. Immunol. Methods. 2020. V. 479. P. 112750.
- Li H., Huang L., Yu Y. et al. Generation of recombinant influenza virus bearing strep tagged PB2 and effective identification of interactional host factors // Vet. Microbiol. 2021. V. 254. P. 108985.
- Li Y. Commonly used tag combinations for tandem affinity purification // Biotechnol. Appl. Biochem. 2010. V. 55 (2). P. 73–83.
- Lilius G., Persson M., Bülow L., Mosbach K. Metal affinity precipitation of proteins carrying genetically attached polyhistidine affinity tails // Eur. J. Biochem. 1991. V. 198 (2). P. 499–504.
- Liu H.-L., Ho Y., Hsu C.-M. Molecular simulations to determine the chelating mechanisms of various metal ions to the His-tag motif: a preliminary study // J. Biomol. Struct. Dyn. 2003. V. 21 (1). P. 31–41.
- Low T.Y., Lee P.Y. Tandem affinity purification (TAP) of interacting prey proteins with FLAG- and HA-tagged bait proteins // Methods Mol. Biol. 2023. V. 2690. P. 69–80.
- MacMillan M.A., Fisher D.I., Roberts K., Orme J.P. Cellular assay optimization. Part I: The use of large-scale transiently transfected cryobanks and introduction of a c-Myc tag to design a standardized ELISA process // J. Biomol. Screen. 2011. V. 16 (9). P. 959–966.
- Mahmoudi Gomari M., Saraygord-Afshari N., Farsimadan M. et al. Opportunities and challenges of the tag-assisted protein purification techniques: applications in the pharmaceutical industry // Biotechnol. Adv. 2020. V. 45. P. 107653.
- Marchetti A., Lima W.C., Hammel P., Cosson P. A Quantitative comparison of antibodies against epitope tags for immunofluorescence detection // FEBS Open Bio. 2023. V. 13 (12). P. 2239–2245.
- Mehrasa R., Cristea I., Bredrup C. et al. Functional characterization of all-trans retinoic acid-induced differentiation factor (ATRAID) // FEBS Open Bio. 2023. V. 13 (10). P. 1874–1886.
- Mikalsen T., Johannessen M., Moens U. Sequence- and position-dependent tagging protects extracellular-regulated kinase 3 protein from 26S proteasome-mediated degradation // Int. J. Biochem. Cell Biol. 2005. V. 37 (12). P. 2513–2520.
- Mishra V. Affinity tags for protein purification // Curr. Protein Pept. Sci. 2020. V. 21 (8). P. 821–830.
- Moon J.-M., Kim G.-Y., Rhim H. A new idea for simple and rapid monitoring of gene expression: requirement of nucleotide sequences encoding an N-terminal HA tag in the T7 promoter-driven expression in E. coli // Biotechnol. Lett. 2012. V. 34 (10). P. 1841–1846.
- Muñoz A., Castellano M.M. Coimmunoprecipitation of interacting proteins in plants // Methods Mol. Biol. 2018. V. 1794. P. 279–287.
- Munro S., Pelham H.R. Use of peptide tagging to detect proteins expressed from cloned genes: deletion mapping functional domains of Drosophila hsp 70 // EMBO J. 1984. V. 3 (13). P. 3087–3093.
- Oluwayelu D.O., Adebiyi A.I. Plantibodies in human and animal health: a review // Afr. Health Sci. 2016. V. 16 (2). P. 640–645.
- Pacheco B., Crombet L., Loppnau P., Cossar D. A screening strategy for heterologous protein expression in Escherichia сoli with the highest return of investment // Protein Expr. Purif. 2012. V. 81 (1). P. 33–41.
- Pao P.-J., Hsu M.-F., Chiang M.-H. et al. Structural basis of an epitope tagging system derived from Haloarcula marismortui bacteriorhodopsin I D94N and its monoclonal antibody GD-26 // FEBS J. 2022. V. 289 (3). P. 730–747.
- Park W.-J., You S.-H., Choi H.-A. et al. Over-expression of recombinant proteins with N-terminal His-tag via subcellular uneven distribution in Escherichia coli // Acta Biochim. Biophys. Sin. (Shanghai). 2015. V. 47 (7). P. 488–495.
- Pedreáñez A., Mosquera-Sulbarán J., Muñóz N. et al. Nanoantibodies: small molecules, big possibilities // BioTechnologia (Pozn). 2021. V. 102 (3). P. 321–336.
- Rigaut G., Shevchenko A., Rutz B. et al. A generic protein purification method for protein complex characterization and proteome exploration // Nat. Biotechnol. 1999. V. 17. P. 1030–1032.
- Rozkov A., Enfors S.-O. Analysis and control of proteolysis of recombinant proteins in Escherichia coli // Adv. Biochem. Eng. Biotechnol. 2004. V. 89. P. 163–195.
- Saiz-Baggetto S., Méndez E., Quilis I. et al. Chimeric proteins tagged with specific 3×HA cassettes may present instability and functional problems // PLoS One. 2017. V. 12 (8). P. e0183067.
- Schembri L., Dalibart R., Tomasello F. et al. The HA tag is cleaved and loses immunoreactivity during apoptosis // Nat. Methods. 2007. V. 4 (2). P. 107–108.
- Schmidt T.G., Skerra A. The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment // Protein Eng. 1993. V. 6 (1). P. 109–122.
- Schmidt T.G.M., Skerra A. The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins // Nat. Protoc. 2007. V. 2 (6). P. 1528–1535.
- Schmidt P., Sparrow L., Attwood R. et al. Taking down the FLAG! How insect cell expression challenges an established tag-system // PLoS One. 2012. V. 7 (6). P. e37779.
- Schmidt T.G.M., Batz L., Bonet L. et al. Development of the Twin-Strep-tag® and its application for purification of recombinant proteins from cell culture supernatants // Protein Expr. Purif. 2013. V. 92 (1). P. 54–61.
- Shestakova E.A., Boutin M., Bourassa S. et al. Identification of proteins associated with transcription factors HOXA9 and E2A-PBX1 by tandem affinity purification // Mol. Biol. (Mosk). 2017. V. 51 (3). P. 490–501.
- Smith J.C., Derbyshire R.B., Cook E. et al. Chemical synthesis and cloning of a poly(arginine)-coding gene fragment designed to aid polypeptide purification // Gene. 1984. V. 32 (3). P. 321–327.
- Tagami H. Purification of histone variant-interacting chaperone complexes // Methods Mol. Biol. 2018. V. 1832. P. 51–60.
- Tehseen M., Raducanu V.-S., Rashid F. et al. Proliferating cell nuclear antigen-agarose column: a tag-free and tag-dependent tool for protein purification affinity chromatography // J. Chromatogr. A. 2019. V. 1602. P. 341–349.
- Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems // Appl. Microbiol. Biotechnol. 2003. V. 60 (5). P. 523–533.
- Thompson J.M., Tragge W., Flood E.D. et al. Development of a 5-HT7 receptor antibody for the rat: the good, the bad, and the ugly // Naunyn-Schmiedeberg′s Arch. Pharmacol. 2023. V. 396 (10). P. 2599–2611.
- Thumberger T., Tavhelidse-Suck T., Gutierrez-Triana J.A. et al. Boosting targeted genome editing using the hei-tag // eLife. 2022. V. 11. P. e70558.
- Traenkle B., Segan S., Fagbadebo F.O. et al. A novel epitope tagging system to visualize and monitor antigens in live cells with chromobodies // Sci. Rep. 2020. V. 10 (1). P. 14267.
- Tsukamoto A., Jae Man L., Oyama K. et al. Effective expression and characterization of the receptor binding domains in SARS-CoV-2 spike proteins from original strain and variants of concern using Bombyx mori nucleopolyhedrovirus in silkworm // Protein Expr. Purif. 2024. V. 218. P. 106450.
- Wester L.E., Lanjuin A., Bruckisch E.H.W. et al. A Single-copy knockin translating ribosome immunoprecipitation toolkit for tissue-specific profiling of actively translated mRNAs in C. elegans // Cell Rep. Methods. 2023. V. 3 (3). P. 100433.
- Woestenenk E.A., Hammarström M., van den Berg S. et al. His tag effect on solubility of human proteins produced in Escherichia coli: a comparison between four expression vectors // J. Struct. Funct. Genomics. 2004. V. 5 (3). P. 217–229.
- Wood D.W. New trends and affinity tag designs for recombinant protein purification // Curr. Opin. Struct. Biol. 2014. V. 26. P. 54–61.
- Wu J., Filutowicz M. Hexahistidine (His6)-tag dependent protein dimerization: a cautionary tale // Acta Biochim. Pol. 1999. V. 46 (3). P. 591–599.
- Yadav D.K., Yadav N., Yadav S. et al. An insight into fusion technology aiding efficient recombinant protein production for functional proteomics // Arch. Biochem. Biophys. 2016. V. 612. P. 57–77.
- Zhang Y., Zhao L., Wang Q. et al. A novel epitope tag from rabies virus has versatile in vitro applications // Appl. Microbiol. Biotechnol. 2023. V. 107 (12). P. 3955–3966.
- Zhao F., Song Q., Wang B. et al. Purification and immobilization of α-amylase in one step by gram-positive enhancer matrix (GEM) particles from the soluble protein and the inclusion body // Appl. Microbiol. Biotechnol. 2020. V. 104 (2). P. 643–652.
- Zhao X., Li G., Liang S. Several affinity tags commonly used in chromatographic purification // J. Anal. Methods Chem. 2013. V. 2013. P. 581093.
Дополнительные файлы
