Hypochlorous acid – a potential secondary messenger in the process of neutrophils’ respiratory burst development

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hypochlorous acid and hypochlorite ions are formed in the halogenating cycle of myeloperoxidase, localized mainly in neutrophils, and play a primary role in antimicrobial protection. The paper presents the results of a study of the effect of exogenous HOCl/OCl in micromolar concentrations on the mechanisms of the “respiratory burst” formation by neutrophils stimulated to phagocytosis. It is shown that this oxidizer is capable of stimulating the functional activity of neutrophils, which is expressed in an increase in the yield of reactive oxygen and chlorine species (ROСS) and secretory degranulation of cells. Enhancement of the “respiratory burst” is associated with activation of NADPH oxidase, PI-3K, MAP kinase ERK1/2 and a decrease in the contribution of intracellular myeloperoxidase to ROСS production by neutrophils. It was found that HOCl/OCl in the studied concentrations is capable of inhibiting myeloperoxidase activity. It is suggested that hypochlorous acid should be considered as a new potential secondary messenger regulating neutrophil functions.

Full Text

Restricted Access

About the authors

G. N. Semenkova

Belarusian State Medical University

Email: n.amaegberi@gmail.com
Belarus, Minsk, 220083

I. I. Zholnerevich

Belarusian State University

Email: n.amaegberi@gmail.com
Belarus, Minsk, 220030

M. A. Murina

Lopukhin Federal Scientific and Clinical Center for Physical-Chemical Medicine of the Federal Medical and Biological Agency

Email: n.amaegberi@gmail.com
Russian Federation, Moscow, 119435

N. V. Amaegberi

Belarusian State University

Author for correspondence.
Email: n.amaegberi@gmail.com
Belarus, Minsk, 220030

D. I. Roshchupkin

Pirogov Russian National Research Medical University

Email: n.amaegberi@gmail.com
Russian Federation, Moscow, 117513

References

  1. Мурина М.А., Сергиенко В.И., Рощупкин Д.И. 1989. Прямое и косвенное противоагрегационное действие гипохлорита натрия на обогащенную тромбоцитами плазму крови. Бюл. экспер. биол. мед. Т. 107. № 12. С. 702. (Murina M.A., Sergienko V.I., Roshchupkin D.I. 1989. Direct and indirect antiaggregatory effect of sodium hypochlorite on platelet-rich blood plasma. Bull. Exp. Biol. Med. V. 107. No. 12. 2008. P. 702.)
  2. Мурина М.А., Рощупкин Д.И., Белакина Н.С., Филиппов С.В., Халилов Э.М. 2005. Усиленная люминолом хемилюминесценция стимулированных полиморфноядерных лейкоцитов: тушение тиолами. Биофизика. Т. 50. № 6. 1100. (Murina M.A., Roshchupkin D.I., Belakina N.S., Filippov S.V., Khalilov E.M. 2005. Luminol-enhanced chemiluminescence of stimulated polymorphonuclear leukocytes: quenching by thiols. Biophysics. V. 50. No. 6. P. 1100.)
  3. Рощупкин Д.И., Белакина Н.С., Мурина М.А. 2006. Усиленная люминолом хемилюминесценция полиморфноядерных лейкоцитов кролика: природа оксидантов, непосредственно вызывающих окисление люминола. Биофизика. Т. 51. № 1. С. 99. (Roshchupkin D.I., Belakina N.S., Murina M.A. 2006. Luminol-enhanced chemiluminescence of rabbit polymorphonuclear leukocytes: the nature of oxidants directly responsible for luminol oxidation, Biofizika. V. 51. No. 1. P. 99.)
  4. Семенкова Г.Н., Квачева З.Б., Жолнеревич И.И., Амаэгбери Н.В., Пинчук С.В. 2024. Гипохлорит-индуцированная модификация свойств астроцитов. Новости медико-биологических наук. Т. 24. № 1. С. 74. (Semenkova G.N., Kvacheva Z.B., Zholnerevich I.I., Amaegberi N.V., Pinchuk S.V. 2024. Hypochlorite-induced modification of astrocyte properties. News of medical and biological sciences. V. 24. No. 1. P. 74.)
  5. Ткачук В.А., Тюрин-Кузьмин П.А., Белоусов В.В., Воротников А.В. 2012. Пероксид водорода как новый вторичный посредник. Биологические мембраны. Т. 29. № 1–2. С. 21. (Tkachuk, V.A., Tyurin-Kuzmin P.A., Belousov V.V., Vorotnikov A.V. 2012. Hydrogen peroxide as a new secondary messenger. Biological membranes. V. 29. No. 1–2. P. 21.)
  6. Andrés C.M.C., Pérez de la Lastra J.M., Juan C.A., Plou F.J., Pérez-Lebeña E. 2022. Hypochlorous acid chemistry in mammalian cells-influence on infection and role in various pathologies. Int. J. Mol. V. 23. Art. ID 10735.
  7. Arnhold J., Malle E. 2022. Halogenation activity of mammalian heme peroxidases. Antioxidants. V. 11. P. 890.
  8. Bauer G. 2018. HOCl and the control of oncogenesis. J. Inorg. Biochem. V. 179. P. 10.
  9. Böyum A. 1976. Isolation of lymphocytes, granulocytes and macrophages. Scand. J. Immunol. V. 5. P. 9.
  10. Fernandes R.M. da Silva N.P., Sato E.I. 2012. Increased myeloperoxidase plasma levels in rheumatoid arthritis. Rheumatol. Int. V. 32. P. 1605.
  11. Fichman Y., Rowland L., Nguyen T.T., Chen S.-J., Mittler R. 2024. Propagation of a rapid cell-to-cell H2O2 signal over long distances in a monolayer of cardiomyocyte cells. Redox Biol. V. 70. Art. ID 103069.
  12. Folkes L.K., Candeias L.P., Wardman P. 1995. Kinetics and mechanisms of hypochlorous acid reactions. Arch. Biochem. Biophys. V. 323. P.120.
  13. Fu X., Kao J.L., Bergt C., Kassim S.Y., Huq N.P., d’Avignon A., Parks W.C., Mecham R.P., Heinecke J.W. 2004. Oxidative cross-linking of tryptophan to glycine restrains matrix metalloproteinase activity: specific structural motifs control protein oxidation. J. Biol. Chem. V. 279. P. 6209.
  14. Gamaley I.A., Kirpichnikova K.M., Klyubin I.V. 1994. Activation of murine macrophages by hydrogen peroxide. Cell Signal. V. 6. P. 949.
  15. Hampton M.B., Kettle A.J., Winterbourn C.C. 1998. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. V. 92. P. 3007.
  16. Hirsch E., Katanaev V.L., Garlanda C., Azzolino O., Pirola L., Silengo L., Sozzani S., Mantovani A., Altruda F., Wymann M.P. 2000. Central role for G protein-coupled phosphoinositide 3-Kinase γ in inflammation. Science. V. 287. P. 1049.
  17. Hu N., Qiu Y., Dong F. 2015. Role of Erk1/2 signaling in the regulation of neutrophil versus monocyte development in response to G-CSF and M-CSF. J. Biol. Chem. V. 290. P. 24561.
  18. Kato F., Tanaka M., Nakamura K. 1999. Rapid fluorometric assay for cell viability and cell growth using nucleic acid staining and cell lysis agents. Toxicol. in Vitro. V. 13. P. 923.
  19. Kettle A.J., Winterbourn C.C. 1994. Assays for the chlorination activity of myeloperoxidase. Methods Enzymol. V. 233. P. 502.
  20. Kulahava T.A., Semenkova G.N., Kvacheva Z.B., Cherenkevich S.N. 2007. Regulation of morphological and functional properties of astrocytes by hydrogen peroxide. Cell Tissue Biol. V. 1. Р. 8.
  21. Kuznetsova T., Kulahava T., Zholnerevich I., Amaegberi N., Semenkova G., Shadyro O., Arnhold J. 2017. Morphometric characteristics of neutrophils stimulated by adhesion and hypochlorite. Mol. Immunol. V. 87. P. 317.
  22. Lacy P. 2006. Mechanisms of degranulation in neutrophils. Allergy Asthma Clin. Immunol. V. 2. P. 98.
  23. Leopold J., Schiller J. 2024. (Chemical) Roles of HOCl in rheumatic diseases. Antioxidants (Basel). V. 13. P. 921.
  24. Morris J.C. 1966. The acid ionization constant of HOCl from 5 to 35. J. Phys. Chem. V. 70. № 12. P. 3798.
  25. Ndrepepa G. 2019. Myeloperoxidase – A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin. Chim. Acta. V. 493. P. 36.
  26. Paclet M.-H., Laurans S., Dupré-Crochet S. 2022. Regulation of neutrophil NADPH oxidase, NOX2: a crucial effector in neutrophil phenotype and function. Cell Dev. Biol. V. 10. Art. ID 945749.
  27. Panasenko, O.M. Vakhrusheva T., Tretyakov V., Spalteholz H., Arnhold J. 2007. Influence of chloride on modification of unsaturated phosphatidylcholines by the myeloperoxidase/hydrogen peroxide/bromide system. Chem. Phys. Lipids. V. 149. P. 40.
  28. Pravalika K., Sarmah D., Kaur H., Wanve M., Saraf J., Kalia K., Borah A., Yavagal D.R., Dave K.R., Bhattacharya P. 2018. Myeloperoxidase and neurological disorder: a crosstalk. ACS Chem. Neurosci. V. 9. P. 421.
  29. Prütz W.A. 1996. Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch. Biochem. Biophys. V. 332. P. 110.
  30. Pulli B., Ali M., Forghani R., Schob S., Hsieh K.L.C., Wojtkiewicz G., Linnoila J.J., Chen J.W. 2013. Measuring myeloperoxidase activity in biological samples. PLoS ONE. V. 8. Art. ID e67976.
  31. Ray R.S., Katyal A. 2016. Myeloperoxidase: bridging the gap in neurodegeneration. Neurosci. Biobehav. Rev. V. 68. P. 611.
  32. Schoonbroodt S., Legrand-Poels S., Best-Belpomme M., Piette J. 1997. Activation of the NF-κB transcription factor in a T-lymphocytic cell line by hypochlorous acid. Biochem. J. V. 321. P. 777.
  33. Shugar D. 1952. The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme. Biochim. Biophys. Acta. V. 8. P. 302.
  34. Sies H. 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. V. 11. P. 613.
  35. Teng N., Maghzal G.J., Talib J., Rashid I., Lau A.K., Stocker R. 2017. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep. V. 22. P. 51.
  36. Ulfig A., Leichert L.I. 2021. The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell. Mol. Life Sci. V. 78. P. 385.
  37. Vile G.F., Rothwell L.A., Kettle A.J. 1998. Hypochlorous acid activates the tumor suppressor protein p53 in cultured human skin fibroblasts. Arch. Biochem. Biophys. V. 359. P. 51.
  38. Wang Y., Chuan C.Y., Hawkins C.L., Davies M.J. 2022. Activation and inhibition of human matrix metalloproteinase-9 (MMP9) by HOCl, myeloperoxidase and chloramines. Antioxidants. V. 11. P. 1616.
  39. Weiss S.J. 1989. Tissue destruction by neutrophils. N. Engl. J. Med. V. 320. P. 365.
  40. Winter J., Ilbert M., Graf P.C.F., Ozcelik D., Jakob U. 2008. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell. V. 135. P. 691.
  41. Zeng M.Y., Miralda I., Armstrong C.L., Uriarte S.M., Bagaitkar J. 2019. The roles of NADPH oxidase in modulating neutrophil effector responses. Mol. Oral. Microbiol. V. 34. P. 27.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Kinetic curves of intensity of luminol-dependent chemiluminescence (CL) of rabbit neutrophils stimulated by PMA in control (1) and under the action of sodium hypochlorite (2-5), respectively, at final concentrations of 1, 10, 20 and 40 microns. PMA (5 micrograms/ml) was injected into a suspension of neutrophils (106 cells in 1 ml) immediately after luminol (20 micrograms). The time of pre-incubation of cells with sodium hypochlorite is 5 minutes. In, (%) is the normalized light intensity: in control (1), the maximum luminous intensity is assumed to be 100%. The averaged dependences of CL intensity according to 10 independent experiments are presented; the data spread is represented by the root-mean-square error of the average value.

Download (34KB)
3. Fig. 2. The dependence of the total intensity of luminol-dependent chemiluminescence (CL) of human neutrophils stimulated by latex and adhesion (a), as well as fMLP and LPS (b), on the concentration of NaOCl. The integral intensity of CL cells in the presence of (ΣIHL) and in the absence of (ΣIHLO) NaOCl was measured within 10 minutes after the addition of luminol.The concentration of fMLP is 0.1 microns, LPS is 25 micrograms/ml. The pre-incubation time of neutrophils with NaOCl is 10 min. The results are presented as averages and their standard deviations.

Download (34KB)
4. Fig. 3. Dependence of the maximum chemiluminescence intensity (Imax) on the concentration of sodium hypochlorite (NaOCl) in the luminol oxidation reaction. The results are presented as averages and their standard deviations.

Download (23KB)
5. Fig. 4. The effect of enzyme inhibitors on the degree of inhibition of luminol-dependent CL of human neutrophils in the presence (light columns) and in the absence (dark columns) of NaOCl (15 microns). The cells were stimulated by adhesion to the glass surface. The time of pre–incubation of neutrophils with NaOCl is 30 minutes, the registration time is 10 minutes; temperature is 37 °C, pH 7.4. Inhibitors are shown: NADPH oxidase (DPI, 1 µm); myeloperoxidase (AVAN, 50 µm); phosphatidylinositol-3-kinase (LY-294002, 3.5 µm) and MAP kinase ERK1/2 (PD-98059, 25 microns). Vertically, the degree of CL inhibition is indicated ((ΣI0 – ΣIi) / ΣI0) · 100%), where ΣI0 and ΣIi are the total intensity of cell luminescence in the absence and presence of the inhibitor, respectively. The results are presented as averages and their standard deviations.

Download (49KB)
6. Fig. 5. The effect of sodium hypochlorite on lysozyme secretion from human blood neutrophils. Incubation time of cells with NaOCl is 15 min. Lysozyme secretion was assessed by the rate of lysis of the cell walls of Micrococcus lysodeikticus bacteria. The results are presented as averages and their standard deviations.

Download (16KB)
7. Fig. 6. MPO activity under the influence of sodium hypochlorite. The pre–incubation time of NaOCl/AVAN with MPO is 10 min. The concentration of AVAN is 1 micron. The results are presented as averages and their standard deviations.

Download (14KB)
8. Fig. 7. The effect of reduced glutathione (GSH) on hypochlorite-enhanced luminol chemiluminescence in rabbit blood neutrophil suspension. Curve 1 – control (luminol and PMA were added to the neutrophils); 2 – GSH (0.2 mM) was introduced into the neutrophil suspension before PMA; 3 – NaOCl (5 microns) was introduced into the neutrophil suspension 3 minutes before PMA; 4 – NaOCl (5 microns) was introduced into the neutrophil suspension 3 minutes before GSH (0.2 mM) and FMA. In, – normalized to control (100% at maximum) the intensity of XL. The averaged dependences of CL intensity according to the data of five independent experiments are presented.; The spread of the data is represented by the root-mean-square error of the average value.

Download (49KB)

Copyright (c) 2024 Russian Academy of Sciences