Влияние водорода на механизмы мукозального иммунитета у пациентов, перенесших заболевание COVID-19
- Авторы: Свитич О.А.1, Баранова И.А.2, Крюкова Н.О.2, Поддубиков А.В.1, Винницкая А.Б.1, Абрамова Н.Д.1, Захарова В.В.2, Шогенова Л.В.2, Костинов М.П.1, Чучалин А.Г.2
-
Учреждения:
- ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
- ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
- Выпуск: Том 94, № 3 (2022)
- Страницы: 372-377
- Раздел: Оригинальные статьи
- Статья получена: 14.12.2021
- Статья опубликована: 15.03.2022
- URL: https://ter-arkhiv.ru/0040-3660/article/view/89469
- DOI: https://doi.org/10.26442/00403660.2022.03.201398
- ID: 89469
Цитировать
Полный текст
Аннотация
Цель. Изучить влияние ингаляций активной формы водорода на клеточные и гуморальные факторы мукозального и системного иммунитета в реабилитационной программе у медицинских работников, перенесших заболевание COVID-19.
Материалы и методы. В исследовании принимали участие пациенты, перенесшие COVID-19 и принимающие лечение ингаляционным водородом в течение 90 мин (n=30), и контрольная группа пациентов, находящихся на лечении по стандартному протоколу ведения пациентов, перенесших COVID-19, в период реабилитации в соответствии с клиническими рекомендациями Минздрава России (n=30). У всех пациентов произведен забор биоматериала (кровь, соскоб эпителиальных клеток со слизиcтой оболочки ротовой и носовой полости). Забор биоматериала осуществлялся в 2 этапа: на 1-й день исследования, до принимаемой терапии и на 10-й день исследования. В полученном материале исследовались показатели гуморального и клеточного иммунитета. Уровни секреторного иммуноглобулина А (sIgA) и иммуноглобулина G исследованы с помощью метода иммуноферментного анализа (набором «Вектор Бест», РФ). Фагоцитоз оценивался на проточном цитофлюориметре FC-500 Beckman Coulter. Статистическая обработка данных проводилась в программе GraphPad Prism 7.00 с использованием непараметрических методов.
Результаты. Показано, что фагоцитарный индекс (ФИ) моноцитов в назальных соскобах после лечения водородом достоверно не менялся относительно 1-го дня лечения и контроля, в то время как ФИ гранулоцитов достоверно повышался относительно 1-го дня в 2,5 раза (p=0,000189), а также относительно контроля в 1,1 раза (p=0,047410). ФИ моноцитов в фарингеальном соскобе показал достоверное повышение относительно 1-го дня лечения в 2,8 раза (p=0,041103), однако не отличался относительно контроля. ФИ гранулоцитов фарингеального соскоба относительно 1-го дня и контроля достоверно не отличался. ФИ гранулоцитов и моноцитов крови исследуемой группы достоверно не изменялся. ФИ гранулоцитов и моноцитов периферической крови относительно контроля на фоне терапии не менялся. Уровень sIgA на 10-й день в назальных соскобах достоверно повышался относительно 1-го дня в 2,9 раза, в то время как в фарингеальном соскобе уровень sIgA достоверно снижался в 2 раза относительно 1-го дня забора.
Заключение. Показано увеличение ФИ гранулоцитов носовой полости и моноцитов ротовой полости, а также уровня sIgA в носовой полости на фоне проведения терапии активным водородом. Полученные данные указывают на эффективность терапии, которая может применяться как в лечении COVID-19, так и при постковидном синдроме в качестве дополнительной терапии.
Ключевые слова
Полный текст
Список сокращений
ФИ – фагоцитарный индекс
ФИТЦ – флуоресцеин-5-изотиоцианит
sIgA – секреторный иммуноглобулин А
Ig – иммуноглобулин
ФСБ – фосфатно-солевой буфер
Введение
Заболевание, вызванное коронавирусом SARS-CoV-2 (COVID-19), появившееся в декабре 2019 г., представляет собой глобальную проблему, особенно в связи с быстрым увеличением числа тяжелобольных пациентов с пневмонией и отсутствием окончательного лечения. В настоящее время не существует режима специфических противовирусных препаратов, используемых для лечения пациентов в критическом состоянии. Ведение пациентов в основном сосредоточено на оказании поддерживающей терапии, например оксигенации, вентиляции и инфузии. Кроме того, неясными остаются как молекулярные механизмы действия вируса на входные ворота инфекции (слизистые оболочки ротовой и носовой полости), так и адаптивные и врожденные компоненты иммунитета, проявляющие себя во входных воротах инфекции.
В этом контексте достаточно перспективным является метод инфузии водорода, обсуждаемый в статье. Проведены многочисленные исследования, доказывающие эффективность терапии ингаляционным кислородом [1–3]. Национальная комиссия здравоохранения Китая и Китайский центр по контролю и профилактике заболеваний рекомендовали эффективные меры кислородной терапии в качестве элемента общего лечения пациентов с новой коронавирусной пневмонией (COVID-19). Состав газовой смеси для ингаляции – водород и кислород (от 66,6% H2 до 33,3% O2). Кислород – при явной дисфункции легких при COVID-19, газообразный водород – инертная часть дыхательного газа, но сам по себе может оказывать положительное воздействие на активацию врожденного и адаптивного иммунитета. Свою эффективность терапия газообразным водородом показала при купировании астмы, снимая воспалительный процесс. Именно этот эффект может улучшать состояние, вызываемое цитокиновым штормом, у пациентов с инфекцией, вызванной вирусом SARS-CoV-2. Таким образом, как и другие многообещающие и крайне необходимые лекарственные средства от COVID-19, лечение газообразным водородом требует доскональных исследований и одобрений с достаточной эффективностью и гарантиями безопасности. Лечение газообразным водородом способно активировать сигнальный путь NRF-2 (NF-E2-related factor 2 – фактор 2, связанный с NF-E2), которые обеспечивает цитопротективную активность и уменьшает повреждение тканей, вызванное SARS-CoV-2, способно активировать антиапоптотические эффекты в лимфоцитах, связанные со способностью газообразного водорода улавливать свободные радикалы, что может предотвратить прогрессирование заболевания и использоваться для профилактики и лечения пациентов с COVID-19. Лечение водородом подавляет активацию провоспалительных цитокинов, через NF-kB-путь (nuclear factor κB – транскрипционный фактор NF-κB) также способен подавлять ангиотензинпревращающий фермент 2 [4–6].
Однако до конца остается неясным, как лечение газообразным водородом влияет на иммунную систему пациентов, перенесших вирусную пневмонию, вызванную SARS-CoV-2. Иммунная система слизистых оболочек является крупнейшим компонентом всей иммунной системы, эволюционировавшей для обеспечения защиты от инфекционной угрозы. Поскольку SARS-CoV-2 первоначально поражает верхние дыхательные пути, его первые взаимодействия с иммунной системой происходят преимущественно на поверхности слизистой оболочки дыхательных путей как во время индуктивной, так и во время эффекторной фаз ответа. Иммунная система слизистых оболочек на сегодняшний день является крупнейшим компонентом всей иммунной системы, включающей как клеточный, так и гуморальный иммунитет [2].
Несмотря на значимость местного иммунного ответа в предотвращении дальнейшего распространения вирусов, исследований факторов врожденного иммунитета на уровне слизистых респираторного тракта у пациентов с инфекцией, вызванной новым коронавирусом, проводилось достаточно мало. В связи со сказанным актуальным является изучение местного клеточного и гуморального, а также системного иммунных ответов при COVID-19, а также влияние газообразного водорода на данные показатели.
Цель исследования – изучить влияние ингаляций активной формы водорода на клеточные и гуморальные факторы мукозального и системного иммунитета в реабилитационной программе у медицинских работников после СOVID-19.
Материалы и методы
В исследовании принимали участие пациенты, перенесшие СOVID-19 и принимающие лечение ингаляционным водородом через носовую канюлю (Intersurgical Ltd, Великобритания), соединенную с аппаратом SUISONIA (Япония). Все пациенты получали процедуру ежедневно в течение 90 мин/сут на протяжении 10 дней в течение 90 мин (n=30). Контрольная группа пациентов находилась на лечении согласно стандартному протоколу ведения пациентов, перенесших COVID-19, в период реабилитации в соответствии с клиническими рекомендациями Минздрава России (n=30). У всех пациентов произведен забор биоматериала (кровь, соскоб эпителиальных клеток со слизистой оболочки ротовой и носовой полости). Забор биоматериала осуществлялся в 2 этапа: на 1-й день исследования до принимаемой терапии и на 10-й день исследования. Все пациенты подписали добровольное информированное согласие на участие в исследовании согласно этическим требованиям, изложенным в Хельсинкской декларации Всемирной медицинской ассоциации 1964 г. и в декларации ЮНЕСКО «Всеобщая декларация по биоэтике и правам человека» 2005 г.
Уровни секреторного иммуноглобулина А (sIgA) и IgG исследованы с помощью метода твердофазного иммуноферментного анализа («Вектор Бест», РФ). Метод определения основан на двухстадийном «сэндвич»-методе твердофазного иммуноферментного анализа с применением моноклональных антител к секреторному компоненту а-цепи IgA. Калибровочные пробы с известной концентрацией sIgA и анализируемые образцы инкубируются в лунках планшета с иммобилизованными моноклональными антителами к sIgA. Степень окраски пропорциональна концентрации sIgA в анализируемом образце. После измерения величины оптической плотности раствора в лунках на основании калибровочного графика рассчитывалась концентрация sIgA в анализируемых образцах.
Исследование фагоцитоза проводится методом проточной цитофлуориметрии и включает три этапа: инкубацию Staphylococcus aureus с флуоресцентным красителем флуоресцеин-5-изотиоцианит – ФИТЦ, инкубацию клеток с меченым S. aureus и оценку фагоцитарной функции на проточном цитофлуориметре. Работа выполнена с использованием штаммов коллекции центра коллективного пользования ФГБНУ «НИИВС им. И.И. Мечникова».
Суточные культуры, второй пересев S. aureus Wood 46 смывали изотоническим раствором хлорида натрия, убивали нагреванием 96–98°С в течение 40 мин, после чего осаждали при 1000 g в течение 25 мин и дважды отмывали в 10 мл фосфатно-солевого буфера (ФСБ; «ПанЭко», РФ) рН 7,4. По стандарту мутности концентрацию бактерий доводили до 200 млн/мл карбонатно-бикарбонатным буфером рН 9,5. К взвеси бактерий добавляли ФИТЦ (Sigma-Aldrich, США) в конечной концентрации для убитых бактерий 0,1 мг/мл и инкубировали при 4°С в течение 12 ч. Затем несвязавшийся ФИТЦ удалялся при 3-кратной отмывке 1000 g 25 мин ФСБ. Концентрацию бактерий доводили до 500 млн/мл по стандарту мутности.
Для постановки реакции использовали цельную гепаринизированную кровь. В эппендорфы помещали взвесь ФИТЦ-меченных стафилококков и клетки крови в соотношении 1:10, после чего инкубировали при 37°С 30 мин, затем добавляли 70 мкл лизирующего раствора Optilyse C (Beckman Coulter) для лизиса эритроцитов и инкубировали пробы при комнатной температуре в темноте 30 мин. Затем вносили холодный ФСБ, рН 7,2–7,4, с добавлением 0,02% ЭДТА для остановки фагоцитарной реакции. После 3-кратной отмывки раствором ISOTON II (Beckman Coulter, США) образцы анализировали на проточном цитофлуориметре FC-500 Beckman Coulter. Процент флуоресцирующих (фагоцитировавших) нейтрофилов и моноцитов высчитывался автоматически и выводился в соответствующих гистограммам таблицах статистики. Рекомендуемое количество собираемых событий по нейтрофилам – 3000.
Для изучения фагоцитоза в соскобах использован следующий протокол. Пробирки с соскобами (мазками) центрифугировали в течение 5 мин при 1000 об/мин. Надосадок отбирали, а к оставшемуся осадку добавляли 25 мкл взвеси убитых S. aureus, меченных ФИТЦ, ресуспендировали и инкубировали 30 мин при 37°С. Затем добавляли холодный ФСБ, рН 7,2–7,4, с добавлением 0,02% ЭДТА для остановки фагоцитарной реакции. После 3-кратной отмывки раствором ISOTON II образцы анализировали на проточном цитофлюориметре FC-500 Beckman Coulter. Процент флюоресцирующих (фагоцитирующих) гранулоцитов и макрофагов высчитывался автоматически и выводился в соответствующих гистограммах таблиц статистики. Статистическая обработка данных проводилась в программе GraphPad Prism 7.00 с использованием непараметрических методов. Различия считали статистически значимыми при допустимой вероятности ошибки р≤0,05.
Результаты
Исследование фагоцитоза на локальном (в назальном и фарингельном соскобах) и системном уровнях у пациентов, перенесших COVID-19
На I этапе проводилось исследование фагоцитарной активности моноцитарного и гранулоцитарного звеньев в крови. Показано, что фагоцитарный индекс (ФИ) гранулоцитов и моноцитов крови исследуемой группы достоверно не изменялся (рис. 1, 2). На II этапе проводилось исследование фагоцитарной активности гранулоцитов и моноцитов в назальных и фарингеальных соскобах. Показано, что ФИ моноцитов в назальных соскобах после лечения водородом достоверно не менялся относительно 1-го дня лечения и контроля, в то время как ФИ гранулоцитов достоверно повышался относительно 1-го дня в 2,5 раза (p=0,000189), а также относительно контроля в 1,1 раза (p=0,047410); рис. 3, 4.
Рис. 1. Сравнительная характеристика фагоцитарной активности гранулоцитов в крови.
Рис. 2. Сравнительная характеристика фагоцитарной активности моноцитов в крови.
Рис. 3. Сравнительная характеристика фагоцитарной активности моноцитов в назальном соскобе.
Рис. 4. Сравнительная характеристика фагоцитарной активности гранулоцитов в назальном соскобе.
Изучение ФИ моноцитов в фарингеальном соскобе показало достоверное повышение относительно 1-го дня лечения в 2,8 раза (p=0,041103), однако не отличался относительно контроля. ФИ гранулоцитов фарингеального соскоба относительно 1-го дня и контроля достоверно не отличался (рис. 5, 6).
Рис. 5. Сравнительная характеристика фагоцитарной активности моноцитов в фарингеальном соскобе.
Рис. 6. Сравнительная характеристика фагоцитарной активности гранулоцитов в фарингеальном соскобе.
Исследование уровня IgA в назальном, фарингеальном соскобах и слюне
При исследовании sIgA в назальном и фарингеальном соскобах показано, что после терапии водородом на 10-й день в назальных соскобах уровень sIgA достоверно повышался относительно 1-го дня в 2,9 раза (рис. 7), в том время как в фарингеальном соскобе уровень sIgA достоверно снижался в 2 раза относительно 1-го дня забора (рис. 8). В контрольной группе не показано достоверно значимых отличий на 1 и 10-й дни забора в назальных и фарингеальных соскобах. Также не выявлено достоверно значимых отличий в уровне sIgA в слюне в контрольной и исследуемой группах, на 1 и 10-й день, а также при их сравнении.
Рис. 7. Сравнительная характеристика уровня sIgA в назальном соскобе в испытуемой группе.
Рис. 8. Сравнительная характеристика sIgA в фарингеальном соскобе в испытуемой группе.
Обсуждение
SARS-CoV-2, вызывающий новую коронавирусную инфекцию в 2019 г. (COVID-19), представлен Всемирной организацией здравоохранения как «пандемия» в марте 2020 г. По данным Всемирной организации здравоохранения, инфицированных людей и летальных исходов от данной инфекции в мире становится все больше и больше. Для снижения распространения вируса во всем мире предпринимаются попытки разработать соответствующую вакцину, однако чтобы нейтрализовать вирус в месте первоначального проникновения, требуется полноценный мукозальный иммунный ответ. Ранее опубликованы работы, направленные на изучение отдельных компонентов мукозального иммунитета, в частности sIgA [7, 8], а также врожденного иммунного ответа на системном уровне, в частности активации нейтрофилов [9–11], однако необходимо изучение этих показателей в совокупности. Также требуются новые методы профилактики распространения инфекции, направленные на модуляцию иммунного ответа слизистых и системного врожденного иммунитета.
В связи с этим нами проведена работа по изучению фагоцитарной активности гранулоцитарного и моноцитарно-макрофагального звеньев на местном и системном уровнях и sIgA, а также влияния нового метода реабилитации пациентов с постковидным синдромом в виде активного водорода на данные показатели у переболевших пациентов.
Нами показано, что реабилитация активным водородом достоверно усиливает фагоцитарную активность гранулоцитов на 10-й день ежедневных процедур в назальных соскобах, но не влияла на ФИ гранулоцитов в фарингельных соскобах. В то же время терапия водородом достоверно усиливала фагоцитарную активность моноцитов в фарингеальных соскобах. Исследование sIgA показало повышение Ig в назальном соскобе и снижение в фарингельном соскобе на 10-й день применения водорода.
Таким образом, нами впервые изучено влияние ингаляционной формы водорода на врожденный иммунный ответ. Показан достоверный эффект восстановления фагоцитарной функции гранулоцитов в слизистой носа и моноцитов слизистой рта. Влияния водорода на фагоцитарную активность гранулоцитов и моноцитов периферической крови не выявлено.
Заключение
Впервые исследовали влияние активной формы водорода на такие компоненты мукозального иммунитета, как фагоцитарная активность клеток и выработка sIgA. Таким образом, нами показано, что активная форма водорода значимо меняет показатели мукозального иммунитета верхних дыхательных путей, что в дальнейшем может быть использовано как для терапии, так и профилактики COVID-19 в качестве дополнительной терапии. Отсутствие изменений под воздействием терапии в фагоцитарной активности гранулоцитов слизистой рта, моноцитов слизистой носа и указанных клеток крови требует дальнейшего изучения.
Раскрытие интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
Disclosure of interest. The authors declare that they have no competing interests.
Вклад авторов. Авторы декларируют соответствие своего авторства международным критериям ICMJE. Все авторы в равной степени участвовали в подготовке публикации: разработка концепции статьи, получение и анализ фактических данных, написание и редактирование текста статьи, проверка и утверждение текста статьи.
Authors’ contribution. The authors declare the compliance of their authorship according to the international ICMJE criteria. All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work.
Источник финансирования. Авторы декларируют отсутствие внешнего финансирования для проведения исследования и публикации статьи.
Funding source. The authors declare that there is no external funding for the exploration and analysis work.
Об авторах
Оксана Анатольевна Свитич
ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
Автор, ответственный за переписку.
Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-1757-8389
SPIN-код: 8802-5569
чл.-кор. РАН, д-р мед. наук, проф., дир., зав. лаб. молекулярной иммунологии
Россия, МоскваИрина Александровна Баранова
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Email: svitichoa@yandex.ru
ORCID iD: 0000-0002-2469-7346
д-р мед. наук, проф., проф. каф. госпитальной терапии педиатрического фак-та
Россия, МоскваНадежда Олеговна Крюкова
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Email: svitichoa@yandex.ru
ORCID iD: 0000-0002-8167-0959
аспирант, ассистент каф. госпитальной терапии педиатрического фак-та
Россия, МоскваАлександр Владимирович Поддубиков
ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
Email: svitichoa@yandex.ru
ORCID iD: 0000-0001-8962-4765
канд. мед. наук, зав. лаб. микробиологии условно-патогенных бактерий
Россия, МоскваАлександра Борисовна Винницкая
ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-0717-8648
науч. сотр. лаб. молекулярной иммунологии
Россия, МоскваНаталья Дмитриевна Абрамова
ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
Email: svitichoa@yandex.ru
ORCID iD: 0000-0002-7307-0515
мл. науч. сотр. лаб. молекулярной иммунологии
Россия, МоскваВалерия Владимировна Захарова
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-3941-1934
ординатор каф. госпитальной терапии педиатрического фак-та
Россия, МоскваЛюдмила Владимировна Шогенова
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Email: svitichoa@yandex.ru
ORCID iD: 0000-0001-9285-9303
канд. мед. наук, доц. каф. внутренних болезней педиатрического фак-та
Россия, Москва
Михаил Петрович Костинов
ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
Email: svitichoa@yandex.ru
ORCID iD: 0000-0002-1382-9403
д-р мед. наук, проф., зав. лаб. вакцинопрофилактики и иммунотерапии аллергических заболеваний
Россия, МоскваАлександр Григорьевич Чучалин
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Email: svitichoa@yandex.ru
ORCID iD: 0000-0002-5070-5450
акад. РАН, д-р мед. наук., проф., зав. каф. госпитальной терапии педиатрического фак-та, председатель правления Российского респираторного общества
Россия, МоскваСписок литературы
- Steinhubl SR. Why have antioxidants failed in clinical trials? Am J Cardiol. 2008;101(10A):14D-9D. doi: 10.1016/j.amjcard.2008.02.003
- Xia C, Liu W, Zeng D, et al. Effect of hydrogen-rich water on oxidative stress, liver function, and viral load in patients with chronic hepatitis B. Clin Transl Sci. 2013;6(5):372-5. doi: 10.1111/cts.12076
- Ge L, Yang M, Yang NN, et al. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget. 2017;8:102653-73. doi: 10.18632/oncotarget.21130
- Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992-1000.e3. doi: 10.1016/j.chom.2020.04.009
- Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-8. doi: 10.1093/cid/ciaa248
- Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. doi: 10.1016/j.jaut.2020.102433
- Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. doi: 10.1084/jem.20200652
- Leppkes M, Knopf J, Naschberger E, et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 2020;58:102925. doi: 10.1016/j.ebiom.2020.102925
- Quinti I, Mortari EP, Fernandez Salinas A, et al. IgA Antibodies and IgA Deficiency in SARS-CoV-2 Infection. Front Cell Infect Microbiol. 2021;11:655896. doi: 10.3389/fcimb.2021.655896
- Demers-Mathieu V, DaPra C, Mathijssen GB, Medo E. Previous viral symptoms and individual mothers influenced the leveled duration of human milk antibodies cross-reactive to S1 and S2 subunits from SARS-CoV-2, HCoV-229E, and HCoV-OC43. J Perinatol. 2021;41(5):952-60. doi: 10.1038/s41372-021-01001-0
- Varadhachary A, Chatterjee D, Garza J, et al. Salivary anti-SARS-CoV-2 IgA as an accessible biomarker of mucosal immunity against COVID-19. medRxiv. 2020;2020.08.07.20170258. doi: 10.1101/2020.08.07.20170258
Дополнительные файлы
