Architectonics of cell subpopulations of peripheral blood in patients with autoimmune myocarditis: clinical and pathogenetic aspects

Abstract

Aim. To compare the most significant architectonic parameters of peripheral blood cell subpopulations in patients with different variants of an autoimmune myocarditis (AIM) course and their clinical value in therapeutic practice.
Material and methods. Blood cell subpopulations were studied with flow cytometry in 99 blood samples from patients having different AIM variants and myocardiosclerosis as well as in 40 healthy donors.
Results. Severe (malignant) AIM was characterized by growing indices of T-/B lymphocyte activation, expression of activation markers on the cells of both differentiation lines, disproportions in composition of subpopulations of the immunoregulatory cells, parallel rise in specific weight of dendritic cells, reduced intensity of apoptosis of autoreactive T-lymphocytes. In benign AIM marked immunopathology was not found. This group can be considered as a separate variant of AIM course necessitating an individual approach to planning pathogenetically sound therapeutic and rehabilitation measures.
Conclusion. The study of activation markers expression on peripheral blood cells is superior to the study of endomyocardial biopsies providing a non-invasive method of immunodiagnosis.

References

  1. Angelini A., Crosato M., Boffa G. M. et al. Active versus borderline myocarditis: clinicopathological correlates and prognostic implications. Heart 2002; 87: 210-215.
  2. Huber S. T cells in coxsackievirus-induced myocarditis. Viral Immunol. 2004; 17(2): 152-164.
  3. Anker S. D., von Haehling S. Inflammatory mediators in chronic heart failure: an overview. Heart 2004; 90: 464-470.
  4. Taylor J. A., Havari E., McInerney M. F. et al. A spontaneous model for autoimmune myocarditis using the human MHC molecule HLA-DQ8. J. Immunol. 2004; 172(4): 2651-2658.
  5. Schmaltz A. A., Kandolf R. Myocarditis in childhood: results of a decades research. Klin. Pädiatr. 2001; 213(1): 1-7.
  6. Порядин Г. В., Казимирский А. Н., Салмаси Ж. М. и др. Изменение экспрессии активационных маркеров лимфоцитами больных инфекционно-аллергическим миокардитом в динамике заболевания. Бюл. экспер. биол. 1999; 1: 14- 16.
  7. Порядин Г. В., Палеев Н. Р., Казимирский А. Г. и др. Динамическая характеристика поверхностного фенотипа лимфоцитов периферической крови у больных миокардитом. Рос. иммунол. журн. 1999; 4(2): 165-170.
  8. Палеев Ф. Н. Популяционный и субпопуляционный состав и экспрессия активационных маркеров лимфоцитов при инфекционно-аллергическом миокардите. Кардиология 1999; 39(8): 53-58.
  9. Kanda T., Yokoyama T., Ohshima S. et al. T0lymphocyte subsets as noninvasive markers of cardiomyopathy. Clin. Cardiol. 1990; 13(9): 617-622.
  10. Fuse K., Kodama M., Ito M. et al. Polarity of helper T cell subsets represents disease nature and clinical course of experimental autoimmune myocarditis in rats. Clin. Exp. Immunol. 2003; 134(3): 403-408.
  11. Палеев Р. Н., Палеев Ф. Н. Цитокины и их роль в патогенезе заболевания сердца. Клин. мед. 2004; 82(5): 4-7.
  12. Mancini G., Carbonara A. O., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 1965; 2(3): 235-254.
  13. Kaya Z., Afanasyeva M., Wang Y. et al. Contribution of the innate immune system to autoimmune myocarditis: a role for complement. Nat. Immunol. 2001; 2(8): 739-745.
  14. Wang Y., Aganasyeva M., Hill S. L., Rose N. R. Nasal administration of cardiac myosin suppresses autoimmune myocarditis in mice. J. Am. Coll. Cardiol. 2000; 36: 1992-1999.
  15. Wilmann K. Flov-cytometric immune function methodology for human peripheral blood dendritic cells. Meth. Mol. Biol. 2003; 215: 41-57.
  16. Metelitsa L. S. Flow cytometry for natural killer T cells: multi-parameter methods for multifunctional cells. Clin. Immunol. 2004; 110(3): 267-276.
  17. Порядин Г. В., Санина Н. П., Макарков А. И. и др. Динамическая характеристика поверхностного фенотипа лимфоцитов периферической крови у больных миокардитом. Rus. J. Immunol. 1999; 4(2): 165-170.
  18. Ishiyama S., Hiroe M., Nishikawa T. et al. The Fas/Fas ligand system is involved in the pathogenesis of autoimmune myocarditis in rats. J. Immunol. 1998; 161(9): 4695-4701.
  19. Plebani M. Biochemical markers of cardiac damage: from efficiency to effectiveness. Clin. Chim. Acta 2001; 311(1): 3-7.
  20. Asseman C., von Herrath M. About CD3pos CD25pos regulatory cells. Autoimmun. Rev. 2002; 1(4): 190-197.
  21. Lang K., Borner A., Figulla H. R. J. Intern. Med. 2000; 247(1): 119-123.
  22. Pajusto M., Ihalainen N., Pelkonen J. et al. Human in vivo-activated CD45R0(+) CD4(+) T cell are susceptible to spontaneous apoptosis that can be inhibited by the chemokine CXCL12 and IL-2, -6, -7, and -15. Eur. J. Immunol. 2004; 34(10): 2771-2780.
  23. Dettmeyer R., Baasner A., Schlamann M. et al. Coxsackie B3 myocarditis in 4 cases of suspected sudden infant death syndrome: diagnosis by immunohistochemical and molecular-pathologic investigations. Pathol. Res. Pract. 2002; 198(10): 589-696.
  24. Doner A., Pauschinger M., Schwimmbeck P. L. et al. The shift in the myocardial adenine nucleotide translocator isoform expression pattern is associated with an enteroviral infection in the absence of an active T-cell dependent immune response in human inflammatory heart disease. J. Am. Coll. Cardiol. 2000; 35(7): 1778-1784.
  25. Arbustini E., Grasso M., Porcu E. et al. Enteroviral RNA and virus-like particles in the skeletal muscle of patients with idiopathic dilated cardiomyopathy. Am. J. Cardiol. 1997; 80(9): 1188-1193.
  26. Zimmer J., Donato L., Hanau D. et al. Activity and phenotype of natural kiler cells in peptide transporter (TAP)-deficient patients (Type I Bare Lymphocyte Syndrome). J. Exp. Med. 1998; 87(1): 117-122.
  27. Yamamoto A., Wenthold R. J. Jr., Zhang J. et al. Immunofluorescence techniques for the identification of immune effector cells in rat heart: applications to the study of the myocarditis induced by interleukin-2. J. Mol. Cell. Cardiol. 1995; 27(1): 307-319.
  28. Ratcliffe N. R., Wegmann K. W., Zhao R. W., Hickey W. F. Identification and characterization of the antigen presenting cell in rat autoimmune myocarditis: evidence of bone marrow derivation and non-requirement for MHC class I compatibility with pathogenic T cells. J. Autoimmun. 2000; 15(3): 369-379.
  29. Zhang H. M., Yanagawa B., Cheung P. et al. Nip21 gene expression reduces coxsackievirus B3 replication by promoting apoptotic cell death via a mitochondria-dependent pathway. Circ. Res. 2002; 90(12): 1251-1258.
  30. Seko Y., Kayagaki N., Seino K. et al. Role of Fas/FasL pathway in the activation of infiltrating cells in murine acute myocarditis caused by Coxsackievirus B3. J. Am. Coll. Cardiol. 2002; 39(8): 1399-1403.
  31. Schoppet M., Pankuweit S., Maisch B. CD83+ dendritic cells in inflammatory infiltrates of Churg-Strauss myocarditis. Arch. Oathol. Lab. Med. 2003; 27(1): 98-101.
  32. Marino A. P., Silva A. A., Pinho R. T., Lannes-Vieira J. Trypanosoma cruzi infection: a continuous invader-host cell cross talk with participation of extracellular matrix and adhesion and chemoattractant molecules. Braz. J. Med. Biol. Res. 2003; 36(8): 1121-1133.
  33. Matsumoto Y., Jee Y., Sugisaki M. Successful TCR-based immunotherapy for autoimmune myocarditis with DNA vaccines after rapid identification of pathogenic TCR. J. Immunol. 2000; 164(4): 2248-2254.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2008 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies