Markers of dysbiosis in patients with ulcerative colitis and Crohn's disease

  • Authors: Danilova NA1, Abdulkhakov SR1,2, Grigoryeva TV1, Markelova MI1, Vasilyev IY.1, Boulygina EA1, Ardatskaya MD3, Pavlenko AV4, Tyakht AV5, Odintsova AK.6, Abdulkhakov RA2
  • Affiliations:
    1. Kazan Federal University
    2. Kazan State Medical University of the Ministry of Health of the Russian Federation
    3. Central State Medical Academy of Administrative Department of the President of the Russian Federation
    4. Federal Research and Clinical Centre of Physical-Chemical Medicine of the Federal Medical and Biological Agency
    5. Institute of Gene Biology of RAS
    6. Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan
  • Issue: Vol 91, No 4 (2019)
  • Pages: 13-20
  • Section: Articles
  • URL: https://ter-arkhiv.ru/0040-3660/article/view/33561
  • DOI: https://doi.org/10.26442/00403660.2019.04.000211
  • Cite item

Abstract


The results of recent studies indicate a significant role of gut microbiota in the pathogenesis of inflammatory bowel diseases (IBD). The aim of the study was to study the taxonomic and functional composition of the gut microbiota in ulcerative colitis (UC) and Crohn's disease (CD) patients to identify key markers of dysbiosis in IBD. Materials and methods. Fecal samples obtained from 95 IBD patients (78 UC and 17 CD) as well as 96 healthy volunteers were used for whole-genome sequencing carried out on the SOLiD 5500 W platform. Taxonomic profiling was performed by aligning the reeds, not maped on hg19, on MetaPhlAn2 reference database. Reeds were mapped using the HUNAnN2 algorithm to the ChocoPhlAn database to assess the representation of microbial metabolic pathways. Short-chain fatty acids (SCFA) level were measured in fecal samples by gas-liquid chromatographic analysis. Results and discussion. Changes in IBD patients gut microbiota were characterized by an increase in the representation of Proteobacteria and Bacteroidetes phyla bacteria and decrease in the number of Firmicutes phylum bacteria and Euryarchaeota phylum archaea; a decrease in the alpha-diversity index, relative representation of butyrate-producing, hydrogen-utilizing bacteria, and Methanobrevibacter smithii; increase in the relative representation of Ruminococcus gnavus in UC and CD patients and Akkermansia muciniphila in CD patients. Reduction of Butyryl-CoA: acetate CoA transferase gene relative representation in CD patients, decrease of absolute content of SCFA total number as well as particular SCFAs and main SCFAs ratio in IBD patients may indicate inhibition of functional activity and number of anaerobic microflora and/or an change in SCFA utilization by colonocytes. Conclusion: the revealed changes can be considered as typical signs of dysbiosis in IBD patients and can be used as potential targets for IBD patients personalized treatment development.

Full Text

Restricted Access

About the authors

N A Danilova

Kazan Federal University

Email: danilova.natalya.87@mail.ru
Kazan, Russia

S R Abdulkhakov

Kazan Federal University; Kazan State Medical University of the Ministry of Health of the Russian Federation

Kazan, Russia

T V Grigoryeva

Kazan Federal University

Kazan, Russia

M I Markelova

Kazan Federal University

Kazan, Russia

I Yu Vasilyev

Kazan Federal University

Kazan, Russia

E A Boulygina

Kazan Federal University

Kazan, Russia

M D Ardatskaya

Central State Medical Academy of Administrative Department of the President of the Russian Federation

Moscow, Russia

A V Pavlenko

Federal Research and Clinical Centre of Physical-Chemical Medicine of the Federal Medical and Biological Agency

Moscow, Russia

A V Tyakht

Institute of Gene Biology of RAS

Moscow, Russia

A Kh Odintsova

Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan

Kazan, Russia

R A Abdulkhakov

Kazan State Medical University of the Ministry of Health of the Russian Federation

Kazan, Russia

References

  1. Лазебник Л.Б., Конев Ю.В. Новое понимание роли микробиоты в патогенезе метаболического синдрома. Consilium Medicum (Прил.). 2014;(8):77-82.
  2. Ситкин С.И., Вахитов Т.Я., Ткаченко Е.И. Орешко Л.С., Жигалова Т.Н., Радченко В.Г., Селиверстов П.В., Авалуева Е.Б., Суворова М.А., Комличенко Э.В. Микробиота кишечника при язвенном колите и целиакии. Экспериментальная и клиническая гастроэнтерология. 2017;1(137):8-30.
  3. Li K.Y, Wei J.P, Gao S.Y, Zhang Y.Y, Wang L.T, Liu G. Fecal microbiota in pouchitis and ulcerative colitis. World J Gastroenterol. 2016;22(40):8929-39. doi: 10.3748/wjg.v22.i40.8929
  4. Presley L.L, Ye J, Li X, Le Blanc J, Zhang Z, Ruegger P.M, Allard J, Mc Govern D, Ippoliti A, Roth B, Cui X, Jeske D.R, Elashoff D, Goodglick L, Braun J, Borneman J. Host - microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal - luminal interface. Inflamm Bowel Dis. 2012 Mar;18(3):409-17. doi: 10.1002/ibd.21793
  5. Ganji L, Alebouyeh M, Shirazi M.H, Eshraghi S.S, Mirshafiey A, Daryani N.E, Zali M.R. Dysbiosis of fecal microbiota and high frequency of Citrobacter, Klebsiella spp., and Actinomycetes in patients with irritable bowel syndrome and gastroenteritis. Gastroenterol Hepatol Bed Bench. 2016;9(4):325-30.
  6. Vrakas S, Mountzouris K.C, Michalopoulos G, Karamanolis G, Papatheodoridis G, Tzathas C, Gazouli M. Intestinal Bacteria Composition and Translocation of Bacteria in Inflammatory Bowel Disease. PLoS One. 2017;12(1):e0170034. doi: 10.1371/journal.pone.0170034
  7. Ситкин С.И., Вахитов Т.Я., Демьянова Е.В. Микробиом, дисбиоз толстой кишки и воспалительные заболевания кишечника: когда функция важнее таксономии. Альманах клинической медицины. 2018;46(5):396-425. doi: 10.18786/2072-0505-2018-46-5-396-425
  8. Mondot S, de Wouters T, Doré J, Lepage P. The human gut microbiome and its dysfunctions. Dig Dis. 2013;31:278-85. doi: 10.1111/nyas.13033
  9. Qin J, Li R, Raes J, Arumugam M, Burgdorf K.S, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende D.R, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J.M, Hansen T, Le Paslier D, Linneberg A, Nielsen H.B, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich S.D, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65. doi: 10.1038/nature08821
  10. Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015;37:47-55. doi: 10.1007/s00281-014-0454-4
  11. Gill S.R, Pop M, Deboy R.T, Eckburg P.B, Turnbaugh P.J, Samuel B.S, Gordon J.I, Relman D.A, Fraser-Liggett C.M, Nelson K.E. Metagenomic analysis of the human distal gut microbiome. Science. 2006;5778:1355-9. doi: 10.1126/science.1124234
  12. Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet J.P, Ugarte E, Muñoz-Tamayo R, Paslier D.L, Nalin R, Dore J, Leclerc M. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11(10):2574-84. doi: 10.1111/j.1462-2920.2009.01982.x
  13. Eckburg P.B, Bik E.M, Bernstein C.N, Purdom E, Dethlefsen L, Sargent M, Gill S.R, Nelson K.E, Relman D.A. Diversity of the Human Intestinal Microbial Flora. Science. 2005;308(5728):1635-8. doi: 10.1126/science.1110591
  14. Tyakht A.V, Kostryukova E.S, Popenko A.S, Belenikin M.S, Pavlenko A.V, Larin A.K, Karpova I.Y, Selezneva O.V, Semashko T.A, Ospanova E.A, Babenko V.V, Maev I.V, Cheremushkin S.V, Kucheryavyy Y.A, Shcherbakov P.L, Grinevich V.B, Efimov O.I, Sas E.I, Abdulkhakov R.A, Abdulkhakov S.R, Lyalyukova E.A, Livzan M.A, Vlassov V.V, Sagdeev R.Z, Tsukanov V.V, Osipenko M.F, Kozlova I.V, Tkachev A.V, Sergienko V.I, Alexeev D.G, Govorun V.M. Human gut microbiota community structures in urban and rural populations in Russia. Nat Commun. 2013;4:2469. doi: 10.1038/ncomms3469
  15. Langmead B, Salzberg S.L. Fast gapped - read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-9. doi: 10.1038/nmeth.1923
  16. Truong D.T, Franzosa E.A, Tickle T.L, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12:902-3. doi: 10.1038/nmeth.3589
  17. Abubucker S, Segata N, Goll J, Schubert A.M, Izard J, Cantarel B.L, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O, Kelley S.T, Methé B, Schloss P.D, Gevers D, Mitreva M, Huttenhower C. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012:8:e1002358. doi: 10.1371/journal.pcbi.1002358
  18. Andoh A, Kuzuoka H, Tsujikawa T, Nakamura S, Hirai F, Suzuki Y, Matsui T, Fujiyama Y, Matsumoto T. Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn’s disease. J Gastroenterol. 2012;47:1298-307. doi: 10.1007/s00535-012-0605-0
  19. Ohkusa T, Sato N, Ogihara T, Morita K, Ogawa M, Okayasu I. Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species - specific antibody. J Gastroenterol Hepatol. 2002;17(8):849-53.
  20. Ott S.J, Musfeldt M, Wenderoth D.F, Hampe J, Brant O, Fölsch U.R, Timmis K.N, Schreiber S. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004;53:685-93. doi: 10.1136/gut.2003.025403
  21. Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, Orsi R.H, Wiedmann M, Mc Donough P, Kim S.G, Berg D, Schukken Y, Scherl E, Simpson K.W. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum. ISMEJ. 2007;1:403-18. doi: 10.1038/ismej.2007.52
  22. Frank D.N, St Amand A.L, Feldman R.A, Boedeker E.C, Harpaz N, Pace N.R. Molecular - phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104:13780-5. doi: 10.1073/pnas.0706625104
  23. Gophna U, Sommerfeld K, Gophna S, Doolittle W.F, Veldhuyzen van Zanten S.J. Differences between tissue - associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis. J Clin Microbiol. 2006 Nov; 44(11):4136-41. doi: 10.1128/JCM.01004-06
  24. Bernstein C.N, Forbes J.D. Gut Microbiome in Inflammatory Bowel Disease and Other Chronic Immune-Mediated Inflammatory Diseases. Inflamm Intest Dis. 2017;2(2):116-23. doi: 10.1159/000481401
  25. Matsuoka K, Mizuno S, Hayashi A, Hisamatsu T, Naganuma M, Kanai T. Fecal microbiota transplantation for gastrointestinal diseases. Keio J Med. 2014;63(4):69-74. doi: 10.2302/kjm.2014-0006-RE
  26. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán L.G, Gratadoux J.J, Blugeon S, Bridonneau C, Furet J.P, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière H.M, Doré J, Marteau P, Seksik P, Langella P. Faecalibacterium prausnitzii is an anti - inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105:16731-6. doi: 10.1073/pnas.0804812105
  27. Sokol H, Seksik P, Furet J.P, Firmesse O, Nion-Larmurier I, Beaugerie L, Cosnes J, Corthier G, Marteau P, Doré J. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15:1183-9. doi: 10.1002/ibd.20903
  28. Pascal V, Pozuelo M, Borruel N, Casellas F, Campos D, Santiago A, Martinez X, Varela E, Sarrabayrouse G, Machiels K, Vermeire S, Sokol H, Guarner F, Manichanh C. A microbial signature for Crohn’s disease. Gut. 2017;66:813-22. doi: 10.1136/gutjnl-2016-313235
  29. Tyakht A.V, Manolov A.I, Kanygina A.V, Ischenko D.S, Kovarsky B.A, Popenko A.S, Pavlenko A.V, Elizarova A.V, Rakitina D.V, Baikova J.P, Ladygina V.G, Kostryukova E.S, Karpova I.Y, Semashko T.A, Larin A.K, Grigoryeva T.V, Sinyagina M.N, Malanin S.Y, Shcherbakov P.L, Kharitonova A.Y, Khalif I.L, Shapina M.V, Maev I.V, Andreev D.N, Belousova E.A, Buzunova Y.M, Alexeev D.G, Govorun V.M. Genetic diversity of Escherichia coli in gut microbiota of patients with Crohn’s disease discovered using metagenomic and genomic analyses. BMC Genomics. 2018;19:968. doi: 10.1186/s12864-018-5306-5
  30. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J. Reduced diversity of faecalmicrobiota in Crohn's disease revealed by a metagenomic approach. Gut. 2006;55:205-11. doi: 10.1136/gut.2005.073817
  31. Mirsepasi-Lauridsen H.C, Vrankx K, Engberg J, Friis-Møller A, Brynskov J, Nordgaard-Lassen I, Petersen A.M, Krogfelt K.A. Disease-Specific Enteric Microbiome Dysbiosis in Inflammatory Bowel Disease. Front Med. 2018. doi: 10.3389/fmed.2018.00304
  32. Ghavami S.B, Rostami E, Sephay A.A, Shahrokh S, Balaii H, Aghdaei H.A, Zali M.R. Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases. Microb Pathog. 2018;117:285-9. doi: 10.1016/j.micpath.2018.01.029
  33. Ситкин С.И., Ткаченко Е.И., Вахитов Т.Я. Филометаболическое ядро микробиоты кишечника. Альманах клинической медицины. 2015;(40):12-34. doi: 10.18786/2072-0505-2015-40-12-34
  34. Fujimoto T, Imaeda H, Takahashi K, Kasumi E, Bamba S, Fujiyama Y, Andoh A. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn's disease. J Gastroenterol Hepatol. 2013;28:613-9. doi: 10.1111/jgh.12073
  35. Machiels K, Joossens M, Sabino J, de Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, van Immerseel F, Verbeke K, Ferrante M, Verhaegen J, Rutgeerts P, Vermeire S. A decrease of the butyrate - producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2013;63:1275-83. doi: 10.1136/gutjnl-2013-304833
  36. Hall A.B, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, Lagoudas G.K, Vatanen T, Fornelos N, Wilson R, Bertha M, Cohen M, Garber J, Khalili H, Gevers D, Ananthakrishnan A.N, Kugathasan S, Lander E.S, Blainey P, Vlamakis H, Xavier R.J, Huttenhower C. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Medicine. 2017;9:103. doi: 10.1186/s13073-017-0490-5
  37. Takahashi K, Nishida A, Fujimoto T, Fujii M, Shioya M, Imaeda H, Inatomi O, Bamba S, Sugimoto M, Andoh A. Reduced abundance of butyrate - producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion. 2016;93(1):59-65. doi: 10.1159/000441768
  38. Png C.W, Lindén S.K, Gilshenan K.S, Zoetendal E.G, Mc Sweeney C.S, Sly L.I, Mc Guckin M.A, Florin T.H. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105(11):2420-8. doi: 10.1038/ajg.2010.281
  39. Pitcher M.C, Beatty E.R, Cummings J.H. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut. 2000;46:64-72. doi: 10.1136/gut.46.1.64
  40. Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1-10. doi: 10.1007/s12328-017-0813-5
  41. Deplancke B, Finster K, Graham W.V, Collier C.T, Thurmond J.E, Gaskins H.R. Gastrointestinal and microbial responses to sulfate - supplemented drinking water in mice. Exp Biol Med (Maywood). 2003;228(4):424-33. doi: 10.1177/153537020322800413
  42. Sartor R.B, Wu G.D. Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches. Gastroenterology. 2016;152(2):327-39. doi: 10.1053/j.gastro.2016.10.012
  43. Захарова И.Н., Ардатская М.Д., Свинцицкая В.И., Сугян Н.Г., Елезова Л.И., Гадзова И.С. Метаболическая активность кишечной микрофлоры у детей на фоне применения cинбиотика, содержащего bifidobacterium bb-12, lactobacillus acidophilus la-5 и фруктоолигосахарид. Педиатрия. 2011;(3):118-24.
  44. Huda-Faujan N, Abdulamir A.S, Fatimah A.B, Muhammad Anas O, Shuhaimi M, Yazid A.M, Loong Y.Y. The impact of the level of the intestinal short chain Fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem J. 2010;4:53-8. doi: 10.2174/1874091X01004010053
  45. Hamer H.M, Jonkers D, Venema K, Vanhoutvin S, Troost F.J, Brummer R.J. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104-19. doi: 10.1111/j.1365-2036.2007.03562.x
  46. Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, Kamada N, Sakuraba A, Yajima T, Higuchi H, Inoue N, Ogata H, Iwao Y, Nomoto K, Tanaka R, Hibi T. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol. 2008;298:463-72. doi: 10.1016/j.ijmm.2007.07.016

Statistics

Views

Abstract - 55

PDF (Russian) - 12

Cited-By


PlumX

Dimensions

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Novoslobodskaya str 31c4., Moscow, 127005, Russian Federation

Managing Editor:

 

© 2018 "Consilium Medicum" Publishing house

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies