Molecular genetics of maturity-onset diabetes of the young


Cite item

Full Text

Abstract

To verify the type of diabetes mellitus (DM) remains an extremely important problem in endocrinology, as along with types 1 and 2 DM there are rarer hereditary types of DM, including maturity-onset diabetes of the young (MODY). The latter is a genetic type of DM, which is characterized by an autosomal dominant inheritance. Eleven types of MODY (MODY 1 to MODY13) are identified; each is associated with mutations in the certain gene: HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, KCNJ11 and ABCC8. A molecular genetic testing for suspected MODY is conducted to verify the diagnosis and to define a subtype of MODY, patient management tactics, to predict the outcome of the disease and its complications in relation to the found subtype of MODY. It is also important to seek mutation causing MODY in terms of the early detection of MODY in the first-degree relatives of a proband, appropriate therapy of the disease, and prevention of its complications

References

  1. Дедов И.И. Инновационные технологии в лечение и профилактике сахарного диабета и его осложнений. Сахарный диабет. 2013;3:2-10. doi: 10.14341/2072-0351-811.
  2. Steele AM, Shields BM, Wensley KJ, Colclough K, Ellard S, Hattersley AT. Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA. 2014;311(3):279-286. doi: 10.1001/jama.2013.283980.
  3. Дедов И.И., Ремизов О.В., Петеркова О.В. Генетическая гетерогенность и клинико-метаболические аспекты сахарного диабета с аутосомно-доминантным наследованием (тип MODY) у детей и подростков. Педиатрия. 2000;6:77-83.
  4. Кураева Т.Л., Зильберман Л.И., Титович Е.В., Петеркова В. А. Генетика моногенных форм сахарного диабета. Сахарный диабет. 2011;1:20-28. doi: 10.14341/2072-0351-6246.
  5. Рымар О.Д., Овсянникова А.К., Мустафина С.В., Максимов В.Н., Куликов И.В., Воевода М.И. Роль MODY-диабета в структуре заболеваемости сахарным диабетом среди пациентов молодого возраста. Сибирский медицинский журнал. 2011;26(24):45-49.
  6. Рымар О.Д., Овсянникова А.К., Мустафина С.В. Ретинопатия у пациентов с дебютом сахарного диабета моложе 25 лет. Вестник НГУ. 2011;9(4):207-211.
  7. Овсянникова А.К. Генетические характеристики MODY 2 диабета в Сибири. Бюллетень Сибирского отделения Российской академии медицинских наук. 2013;5:74-77.
  8. Murphy R, Ellard S, Hattersley AT. Clinical implication of a molecular genetic classification of monogenic β-cell diabetes. Nature Clinical Practice. 2008;4(4):200-213. doi: 10.1038/ncpendmet0778.
  9. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131-142. doi: 10.1038/nrm1835.
  10. Ryffel GU. Mutations in the human genes encoding the transcription factors of the hepatocyte nuclear factor (HNF)1 and HNF4 families: functional and pathological consequences. J Mol Endocrinol. 2001;27:11-29. doi: 10.1677/jme.0.0270011.
  11. Gupta R, Vatamaniuk MZ, Lee C, Flaschen RC, Fulmer JT, Matschinsky FM, Duncan SA, Kaestner KH. The MODY1 gene HNF-4alpha regulates selected genes involved in insulin secretion. J Clin Investigat. 2005;115:1006-1015. doi: 10.1172/jci22365.
  12. Inoue Y, Yu AM, Yim SH, Ma X, Krausz KW, Inoue J, Xiang CC, Brownstein MJ, Eggertsen G, Björkhem I, Gonzalez FJ. Regulation of bile acid biosynthesis by hepatocyte nuclear factor 4alpha. J Lipid Res. 2006;47:215-227. doi: 10.1194/jlr.m500430-jlr200.
  13. Ellard S, Bellanne-Chantelot C, Hattersley AT. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia. 2008;51:546-553. doi: 10.1007/s00125-008-0942-y.
  14. Ellard S, Colclough K. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Human Mutation. 2006;27:854-869. doi: 10.1002/humu.20357.
  15. Pearson ER, Pruhova S, Hattersley TCJ, Johansen A, Castleden HAJ, Lumb PJ, Wierzbicki AS, Clark PM, Lebl J, Pedersen O, Ellard S, Hansen T, Hattersley AT. Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4α mutations in a large European collection. Diabetologia. 2005;48:878-885. doi: 10.1007/s00125-005-1738-y
  16. Pearson ER, Boj SF, Steele AM, Barrett T, Stals K, Shield JP, Ellard S, Ferrer J, Hattersley AT. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med. 2007;4:e118. doi: 10.1371/journal.pmed.0040118.
  17. Byrne MM, Sturis J, Clement K, Pueyo ME, Stoffel M, Takeda J, Passa P, Cohen D, Bell GI. Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J Clin Investigat. 1994;93:1120-1130. doi: 10.1172/jci117064.
  18. Tang L, Ye H, Hong Q, Wang L, Wang Q, Wang H, Xu L, Bu S, Zhang L, Cheng J, Liu P, Le Y, Ye M, Mai Y. Duan Elevated CpG island methylation of GCK gene predicts the risk of type 2 diabetes in Chinese males. Gene. 2014;547(2):329-333. doi: 10.1016/j.gene.2014.06.062.
  19. Lenzen S. A fresh view of glycolysis and glucokinase regulation: history and current status. JBiol Chem. 2014;289(18):12189-94. doi: 10.1074/jbc.r114.557314.
  20. Zelent B, Raimondo A, Barrett A, Buettger CW, Chen P, Gloyn AL, Matschinsky FM. Analysis of the co-operative interaction between the allosterically regulated proteins GK and GKRP using tryptophan fluorescence. Biochem J. 2014;459(3):551-564. doi: 10.1042/bj20131363.
  21. Stoffel M, Bell KL, Blackburn CL, Powell KL, Seo TS, Takeda J, Vionnet N, Xiang KS, Gidh-Jain M, Pilkis SJ. Identification of glucokinase mutations in subjects with gestational diabetes mellitus. Diabetes. 1993;42(6):937-940. doi: 10.2337/diabetes.42.6.937.
  22. Negahdar M, Aukrust I, Molnes J, Solheim MH, Johansson BB, Sagen JV, Dahl-Jorgensen K, Kulkarni RN, Sovik O, Flatmark T, Njolstad PR, Bjorkhaug L. GCK-MODY diabetes as a protein misfolding disease: the mutation R275C promotes protein misfolding, self-association and cellular degradation. Mol Cell Endocrinol. 2014;382(1):55-65. doi: 10.1016/j.mce.2013.08.020.
  23. Thanabalasingham G, Kaur K, Talbot F, Colclough K, Mathews A, Taylor J, Ellard S, Owen KR. Atypical phenotype associated with reported GCK exon 10 deletions: Clinical judgement is needed alongside appropriate genetic investigations. Diabetic Med. 2013;30(8):e233-8. doi: 10.1111/dme.12210.
  24. Odom DT, Zizlsperger N, Gordon DB. Control of pancreas and liver gene expression byHNF transcription factors. Science. 2004;303:1378-1381. doi: 10.1126/science.1089769.
  25. Kaisaki PJ, Menzel S, Lindner T, Oda N, Rjasanowski I, Sahm J, Meincke G, Schulze J, Schmechel H, Petzold C, Ledermann HM, Sachse G, Boriraj VV, Menzel R, Kerner W, Turner RC, Yamagata K, Bell GI. Mutations in the hepatocyte nuclear factor-1alpha gene in MODY and early-onset NIDDM: evidence for a mutational hotspot in exon 4. Diabetes. 1997;46:528-535. doi: 10.2337/diabetes.46.3.528.
  26. Frayling TM, Evans JC, Bulman MP, Pearson E, Allen L, Owen K, Bingham C, Hannemann M, Shepherd M, Ellard S, Hattersley AT. Beta cell genes and diabetes — molecular and clinical characterization of mutations in transcription factors. Diabetes. 2001;50:S94-S100. doi: 10.2337/diabetes.50.2007.s94.
  27. Wobser H, Bonner C, Nolan JJ, Byrne MM, Prehn JHM. Downregulation of protein kinase B/Akt-1 mediates INS-1 insulinoma cell apoptosis induced by dominant-negative suppression of hepatocyte nuclear factor-1alpha function. Diabetologia. 2006;49:519-526. doi: 10.1007/s00125-005-0119-x.
  28. Bellanné-Chantelot C, Carette C, Riveline J, Valero R, Gautier J-F, Larger E, Reznik Y, Ducluzeau P-H, Sola A, Hartemann-Heurtier A, Lecomte P, Chaillous L, Laloi-Michelin M, Wilhem J-M, Cuny P, Duron F. The type and the position of HNF1A mutation modulate age at diagnosis of diabetes in patients with maturity-onset diabetes of the young (MODY)-3. Diabetes. 2008;57: 503-508. doi: 10.2337/db07-0859.
  29. Pearson ER, Flechtner I, Njolstad PR, Malecki MT, Flanagan SE, Larkin B, Ashcroft FM, Klimes I, Codner E, Iotova V, Slingerland AS, Shield J. Switching from insulin to oral sulfonylureas in patients with diabetes due to kir6.2 mutations. New Engl J Med. 2006;355:467-477. doi: 10.1056/nejmoa061759.
  30. Stride A, Ellard S, Clark P, Shakespeare L, Salzmann M, Shepherd M, Hattersley AT. Beta-cell dysfunction, insulin sensitivity, and glycosuria precede diabetes in hepatocyte nuclear factor-1alpha mutation carriers. Diabetes Care. 2005;28:1751-1756. doi: 10.2337/diacare.28.7.1751.
  31. Isomaa B, Henricsson M, Lehto M, Forsblom C, Karanko S, Sarelin L, Haggblom M, Groop L. Chronic diabetic complications in patients with MODY3 diabetes. Diabetologia. 1998;41:467-473. doi: 10.1007/s001250050931.
  32. Pearson ER, Liddell WG, Shepherd M, Corrall RJ, Hattersley AT. Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor 1 alpha gene mutations: evidence for pharmacogenetics in diabetes. Diabetic Med. 2000;17:543-545. doi: 10.1046/j.1464-5491.2000.00305.x.
  33. Zucman-Rossi J, Jeannot E, Nhieu JT, Scoazec J-Y, Guettier C, Rebouissou S, Bacq Y, Leteurtre E, Paradis V, Michalak S, Wendum D, Chiche L. Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology. 2006;43(3):515-524. doi: 10.1002/hep.21068.
  34. López-Garrido MP, Herranz-Antolín S, Alija-Merillas MJ, Giralt P, Escribano J. Co-inheritance of HNF1a and GCK mutations in a family with maturity-onset diabetes of the young (MODY): implications for genetic testing. Clin Endocrinol. 2013;79(3):342-347. doi: 10.1111/cen.12050.
  35. Donelan W, Wang H, Li SW, Pittman D, Li Y, Han S, Sun Y, Carter C, Atkinson M, Reeves W, Winter WE, Yang LJ. Novel detection of pancreatic and duodenal homeobox 1 autoantibodies (PAA) in human sera using luciferase immunoprecipitation systems (LIPS) assay. Int J Clin Exp Pathol. 2013;6(6):1202-1210.
  36. Macfarlane WM, Frayling TM, Ellard S, Evans JC, Allen LIS, Bulman MP, Ayres S, Shepherd M, Clark P, Millward A, Demaine A, Wilkin T, Docherty K. Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J Clin Investigat. 1999;104:R33-R39. doi: 10.1172/jci7449.
  37. De Franco E, Shaw-Smith C, Flanagan SE, Edghill EL, Wolf J, Otte V, Ebinger F, Varthakavi P, Vasanthi T, Edvardsson S, Hattersley AT, Ellard S. Biallelic PDX1 (insulin promoter factor 1) mutations causing neonatal diabetes without exocrine pancreatic insufficiency. Diabetic Med. 2013;30(5):e197-200. doi: 10.1111/dme.12122.
  38. Rasmussen M, Ramsing M, Petersen OB, Vogel I, Sunde L. A description of a fetal syndrome associated with HNF1B mutation and a wide intrafamilial disease variability. Am J Med Genet Part A. 2013;161A(12):3191-3195. doi: 10.1002/ajmg.a.36190.
  39. Chauveau D, Faguer S, Bandin F. HNF1B-related disease: paradigm of a developmental gene and unexpected recognition of a new renal disease. Nephrol Ther. 2013;9(6):393-397.
  40. Cuff J, Salari K, Clarke N, Esheba GE, Forster AD, Huang S, West RB, Higgins JP, Longacre TA, Pollack JR. Integrative bioinformatics links HNF1B with clear cell carcinoma and tumor-associated thrombosis. PLoS One. 2013;8(9):e74562. doi: 10.1371/journal.pone.0074562.
  41. Edghill EL, Bingham C, Ellard S. Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet. 2006;43(1):84-90. doi: 10.1136/jmg.2005.032854.
  42. Carette C, Vaury C, Barthelemy A, Clauin S, Grünfeld J-P, Timsit J, Bellanné-Chantelot C. Exonic duplication of the hepatocyte nuclear factor-1-beta gene (transcription factor 2, hepatic) as a cause of maturity onset diabetes of the young type 5. J Clin Endocrinol Metabol. 2007;92:2844-2847. doi: 10.1210/jc.2007-0286.
  43. Rebouissou S, Vasiliu V, Thomas C. Germline hepatocyte nuclear factor 1-alpha and 1-beta mutations in renal cell carcinomas. Human Molr Genet. 2005;14:603-614. doi: 10.1093/hmg/ddi057.
  44. DeLair D, Han G, Irving JA, Leung S, Ewanowich CA, Longacre TA, Gilks CB, Soslow RA. HNF-1β in ovarian carcinomas with serous and clear cell change. Int J Gynecol Pathol. 2013;32(6):541-546. doi: 10.1097/pgp.0b013e318273fd07.
  45. Chae JH, Stein GH, Lee JE. NeuroD: the predicted and the surprising. Mol Cells. 2004;18(3):271-288.
  46. Osborne JK, Larsen JE, Shields MD, Gonzales JX, Shames DS, Sato M, Kulkarni A, Wistuba II, Girard L, Minna JD, Cobb MH. NeuroD1 regulates survival and migration of neuroendocrine lung carcinomas via signaling molecules TrkB and NCAM. Proceedings of the National Academy of Sciences. 2013;110(16):6524-6529. doi: 10.1073/pnas.1303932110.
  47. Ray SK, Leiter AB. The basic helix-loop-helix transcription factor NeuroD1facilitates interaction of Sp1 with the secretin gene enhancer. Mol Cell Biol. 2007;27(22):7839-7847. doi: 10.1128/mcb.00438-07.
  48. Appavoo M, Tuch B. Effect of upregulation of NeuroD in insulin-producing liver cells. Islets. 2009;1(1):55-61. doi: 10.4161/isl.1.1.8993.
  49. Gong ZC, Huang Q, Dai XP, Lei G-H, Lu H-B, Yin J-Y, Xu X-J, Qu J, Qi Pei, Min Dong, Bo-Ting Zhou, Shen J, Zhou G, Zhou H-H, Liu Z-Q. NeuroD1 A45T and PAX4 R121W polymorphisms are associated with plasma glucose level of repaglinide monotherapy in Chinese patients with type 2 diabetes. Br J Clin Pharmacol. 2012;74(3):501-509. doi: 10.1111/j.1365-2125.2012.04202.x.
  50. Huang P, Kishida S, Cao D, Murakami-Tonami Y, Mu P, Nakaguro M, Koide N, Takeuchi I, Onishi A, Kadomatsu K. The neuronal differentiation factor NeuroD1 downregulates the neuronal repellent factor Slit2 expression and promotes cell motility and tumor formation of neuroblastoma. Cancer Res. 2011;71(8):2938-2948. doi: 10.1158/0008-5472.can-10-3524.
  51. McConnell BB, Yang VW. Mammalian Krüppel-like factors in health and diseases. Physiol Rev. 2010;90(4):1337-1381. doi: 10.1152/physrev.00058.2009.
  52. Zheng Y, Tabbaa ZM, Khan Z, Schoolmeester JK, El-Nashar S, Famuyide A, Keeney GL, Daftary GS. Epigenetic Regulation of Uterine Biology by Transcription Factor KLF11 via Posttranslational Histone Deacetylation of Cytochrome p450 Metabolic Enzymes. Endocrinology. 2014;155(11):4507-4520. doi: 10.1210/en.2014-1139.
  53. Perakakis N, Danassi D, Alt M, Tsaroucha E, Mehana AE, Rimmer N, Laubner K, Wang H, Wollheim CB, Seufert J, Path G. Human Krüppel-like factor 11 differentially regulates human insulin promoter activity in β-cells and non-β-cells via p300 and PDX1 through the regulatory sites A3 and CACCC box. Mol Cell Endocrinol. 2012;363(1-2):20-26. doi: 10.1016/j.mce.2012.07.003.
  54. Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, Dina C, Hamid YH, Joly E, Vaillant E, Benmezroua Y, Durand E, Bakaher N, Delannoy V, Vaxillaire M, Cook T, Dallinga-Thie GM, Jansen H, Charles M-A. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proceedings of the National Academy of Sciences. 2005;102(13):4807-4812. doi: 10.1073/pnas.0409177102.
  55. Hui DY, Howles PN. Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J Lipid Res. 2002;43(12):2017-2030. doi: 10.1194/jlr.r200013-jlr200.
  56. Torsvik J, Johansson BB, Dalva M, Marie M, Fjeld K, Johansson S, Bjorkoy G, Saraste J, Njolstad PR, Molven A. Endocytosis of secreted carboxyl ester lipase in a syndrome of diabetes and pancreatic exocrine dysfunction. J Biol Chem. 2014;289(42):29097-29111. doi: 10.1074/jbc.m114.574244.
  57. Vesterhus M, Raeder H, Aurlien H, Gjesdal CG, Bredrup C, Holm PI, Molven A, Bindoff L, Berstad A, Njolstad PR. Neurological features and enzyme therapy in patients with endocrine and exocrine pancreas dysfunction due to CEL mutations. Diabetes Care. 2008;31(9):1738-1740. doi: 10.2337/dc07-2217.
  58. Tjora E, Wathle G, Engjom T, Erchinger F, Molven A, Aksnes L, Haldorsen IS, Dimcevski G, Njolstad PR, Ræder H. Severe pancreatic dysfunction but compensated nutritional status in monogenic pancreatic disease caused by carboxyl-ester lipase mutations. Pancreas. 2013;42(7):1078-1084. doi: 10.1097/mpa.0b013e3182920e9c.
  59. Ræder H, McAllister FE, Tjora E, Bhatt S, Haldorsen I, Hu J, Willems SM, Vesterhus M, El Ouaamari A, Liu M, Raeder MB, Immervoll H, Hoem D, Dimcevski G, Njolstad PR, Molven A, Gygi SP, Kulkarni RN. Carboxyl-ester lipase maturity-onset diabetes of the young is associated with development of pancreatic cysts and upregulated MAPK signaling in secretin-stimulated duodenal fluid. Diabetes. 2014;63(1):259-269. doi: 10.2337/db13-1012.
  60. Smith SB, Ee HC, Conners JR, German MS. Paired-homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol Cell Biol. 1999;19(12):8272-8280.
  61. Smith SB, Watada H, Scheel DW, Mrejen C, German MS. Autoregulation and maturity onset diabetes of the young transcription factors control the human PAX4 promoter. J Biol Chem. 2000;275(47):36910-36919. doi: 10.1074/jbc.m005202200.
  62. Bonnavion R, Jaafar R, Kerr-Conte J, Assade F, Stralen E, Leteurtre E, Pouponnot C, Gargani S, Pattou F, Bertolino P, Cordier-Bussat M, Lu J, Zhang CX. Both PAX4 and MAFA are expressed in a substantial proportion of normal human pancreatic alpha cells and deregulated in patients with type 2 diabetes. PLoS One. 2013;8(8):e72194. doi: 10.1371/journal.pone.0072194.
  63. Biason-Lauber A, Boehm B, Lang-Muritano M, Gauthier BR, Brun T, Wollheim CB, Schoenle EJ. Association of childhood type 1 diabetes mellitus with a variant of PAX4: possible link to beta cell regenerative capacity. Diabetologia. 2005;48(5):900-905. doi: 10.1007/s00125-005-1723-5.
  64. Mauvais-Jarvis F, Smith SB, Le May C. PAX4 gene variations predispose to ketosis-prone diabetes. Human Mol Genet. 2004;13:3151-3159. doi: 10.1093/hmg/ddh341.
  65. Plengvidhya N, Kooptiwut S, Songtawee N, Doi A, Furuta H, Nishi M, Nanjo K, Tantibhedhyangkul W, Boonyasrisawat W, Yenchitsomanus P, Doria A, Banchuin N. PAX4 mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab. 2007; 92: 2821-2826. doi: 10.1210/jc.2006-1927.
  66. Jo W, Endo M, Ishizu K, Nakamura A, Tajima T. A novel PAX4 mutation in a Japanese patient with maturity-onset diabetes of the young. Tohoku J Exper Med. 2011;223(2):113-118. doi: 10.1620/tjem.223.113
  67. Chapla A, Mruthyunjaya MD, Asha HS, Varghese D, Varshney M, Vasan SK, Venkatesan P, Nair V, Mathai S, Paul TV, Thomas N. Maturity onset diabetes of the young in India — a distinctive mutation pattern identified through targeted next-generation sequencing. Clin Endocrinol. 2014. doi: 10.1111/cen.12541.
  68. Bonfanti R, Colombo C, Nocerino V, Massa O, Lampasona V, Iafusco D, Viscardi M, Chiumello G, Meschi F, Barbetti F. Insulin gene mutations as cause of diabetes in children negative for five type 1 diabetes autoantibodies. Diabetes Care. 2009;32(1):123-125. doi: 10.2337/dc08-0783.
  69. Meur G, Simon A, Harun N, Virally M, Dechaume A, Bonnefond A, Fetita S, Tarasov AI, Guillausseau P-J, Boesgaard TW, Pedersen O, Hansen Р, Polak M, Gautier J-F, Froguel P, Rutter GTA, Vaxillaire M. Insulin gene mutations resulting in early-onset diabetes: marked differences in clinical presentation, metabolic status, and pathogenic effect through endoplasmic reticulum retention. Diabetes. 2010;59(3):653-661. doi: 10.2337/db09-1091.
  70. Borowiec M, Liew CW, Thompson R, Boonyasrisawat W, Hu J, Mlynarski WM, El Khattabi I, Kim S-H, Marselli L, Rich SS, Krolewski AS, Bonner-Weir S, Sharma A, Sale M, Mychaleckyj JC, Kulkarni RN, Doria A. Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proceedings of the National Academy of Sciences. 2009;106:14460-14465. doi: 10.1073/pnas.0906474106.
  71. Tsuchiya N, Ito I, Kawasaki A. Association of IRF5, STAT4 and BLK with systemic lupus erythematosus and other rheumatic diseases. J Clin Immunol. 2010;33:57-65. doi: 10.2177/jsci.33.57.
  72. D’Amato E, Tammaro P, Craig TJ, Tosi A, Giorgetti R, Lorini R, Ashcroft FM. Variable phenotypic spectrum of diabetes mellitus in a family carrying a novel KCNJ11 gene mutation. Diabetic Med. 2008;25(6):651-656. doi: 10.1111/j.1464-5491.2008.02443.x.
  73. Shimomura K, Girard CA, Proks P, Nazim J, Lippiat JD, Cerutti F, Lorini R, Ellard S, Hattersley AT, Barbetti F, Ashcroft FM. Mutations at the same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce different functional effects. Diabetes. 2006;55(6):1705-1712. doi: 10.2337/db05-1640.
  74. Tarasov AI, Nicolson TJ, Riveline JP, Taneja TK, Baldwin SA, Baldwin JM, Charpentier G, Gautier J-F, Froguel P, Vaxillaire M, Rutter GA. A rare mutation in ABCC8/SUR1 leading to altered ATP-sensitive K+ channel activity and beta-cell glucose sensing is associated with type 2 diabetes in adults. Diabetes. 2008;57(6):1595-1604. doi: 10.2337/db07-1547.
  75. Haghverdizadeh P, Sadat Haerian M, Haghverdizadeh P, Haerian BS. ABCC8 genetic variants and risk of diabetes mellitus. Gene. 2014;545(2):198-204. doi: 10.1016/j.gene.2014.04.040.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies