Genetic determinants of antibiotic resistance in oropharyngeal streptococci in patients with chronic obstructive pulmonary disease and in those with asthma

Full Text

Abstract

Aim. To identify oropharyngeal Streptococcus species and to analyze the genetic determinants of antibiotic resistance in patients with asthma and in those with chronic obstructive pulmonary disease (COPD). Materials and methods. An experimental diagnostic Streptopol+ (Lytech Co. LTD) panel based on a multiplex real-time PCR was applied to investigate the representation of antimicrobial resistance genes (mef and ermB) and the species composition of streptococci isolated from oropharyngeal swab samples from 89 patients with stable COPD and from 51 patients with asthma. Results. In the stable disease period, the oropharyngeal swabs were found to contain Streptococcus pneumoniae in 7.8% of the patients with asthma and in 6.74% of those with COPD; the common feature of these groups was a tendency towards a severe disease course and recurrent exacerbations requiring antibiotics. S. pyogenus was detected in 42.9% of the oropharyngeal swabs from COPD and asthma patients without exacerbations. The oropharyngeal swabs showed the mef gene in 100% of the patients with asthma and in 100% of those with COPD; the ermB gene was encountered in 91% of the patients with COPD and in 82.4% of those with asthma. The COPD patients displayed a direct correlation between the representation of the ermB gene and sputum production and smoking index. The mef and ermB genes were directly correlated with the frequency of exacerbations in patients with COPD. Conclusion. The identified streptococci are a reservoir of antimicrobial resistance genetic determinants – the mef and ermB genes encoding the mechanisms of streptococcal macrolide resistance. The representation of the above genes directly correlates with the frequency of exacerbations and the number of antimicrobial drug uses.

References

  1. Cabrera-Rubio R, Garcia-Núñez M, Setó L, Antó JM, Moya A, Monsó E, Mira A. Microbiome diversity in the bronchial tracts of patients with chronic obstructive pulmonary disease. J Clin Microbiol. 2012;50(11):3562-3568. doi: 10.1128/jcm.00767-12.
  2. Garcha DS, Thurston SJ, Patel AR, Mackay AJ, Goldring JJ, Donaldson GC, McHugh TD, Wedzicha JA. Changes in prevalence and load of airway bacteria using quantitative PCR in stable and exacerbated COPD. Thorax. 2012;67(12):1075-1080. doi: 10.1128/jcm.00767-12.
  3. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease [Electronic resource]. Update 2011. Mode of access: http://www.goldcopd.com/GuidelineItem.asp?intId=989.
  4. Bisgaard H, Hermansen MN, Bønnelykke K, Stokholm J, Baty F, Skytt NL, Aniscenko J, Kebadze T, Johnston SL. Association of bacteria and viruses with wheezy episodes in young children: prospective birth cohort study. BMJ. 2010;341:4978. doi:http://dx.doi.org/10.1136/bmj.c4978.
  5. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L, Moffatt MF, Cookson WO. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5(1):e8578. doi: 10.1371/journal.pone.0008578.
  6. Чучалин А.Г., Авдеев С.Н., Архипов В.В., Бабак С.Л. Рациональная фармакотерапия заболеваний органов дыхания: Руководство для практикующих врачей. М.: Литтерра; 2004:874.
  7. Пульмонология. Национальное руководство. Под ред. акад. РАМН Чучалина А.Г. М.: ГЭОТАР-Медиа; 2013:768.
  8. Reinert RR, Ringelstein A, van der Linden M, Cil MY, Al-Lahham A, Schmitz FJ. Molecular Epidemiology of Macrolide-Resistant Streptococcus pneumoniae Isolates in Europe. J Clin Microbiol. 2005;43:1294-1300.
  9. Страчунский Л.С., Кречикова О.И., Решедько Г.К. Чувствительность к антибиотикам пневмококков, выделенных от здоровых детей из организованных коллективов. Клиническая микробиология и антимикробная химиотерапия. 1999; 1(1):31-39.
  10. Facklam R. What happed to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev. 2002;15:613-630.
  11. Corless CE, Guiver M, Borrow R, Edwards-Jones V, Fox AJ, Kaczmarski EB. Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J Clin Microbiol. 2001;39:1553-1558.
  12. McAvin JC, Reilly PA, Lohman KL. Sensitive and specific method for rapid identification of Streptococcus pneumoniae using real-time fluorescence PCR. J Clin Microbiol. 2001;39:3446-3451.
  13. Farrell DJ, Morrissey I, Bakker S, Morrissey I, Bakker S, Morris L, Buckridge S, Felmingham D. Molecular Epidemiology of Multiresistant Streptococcus pneumoniae with Both ermB- and mef(A)-Mediated Macrolide Resistance. J Clin Microbiol. 2004; 42:764-768.
  14. Reinert RR, Ringelstein A, van der Linden M. Molecular Epidemiology of Macrolide-Resistant Streptococcus pneumoniae Isolates in Europe. J Clin Microbiology. 2005;43:1294-1300.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies