Biomarkers of acute kidney injury: Current views and prospects


Cite item

Full Text

Abstract

In the past decades, the incidence of acute kidney dysfunction has been steadily increasing, which is mainly due to rises in the prevalence of cardiovascular diseases and the survival of cardiac patients and to more common use of intervention examination and treatment methods. The early diagnosis of acute kidney injury (AKI) is made difficult by the delay in clinical symptoms and the elevated serum levels of creatinine as to cell damage, which chiefly appears as the expression of biomarkers. The new AKI biomarkers whose concentration changes significantly earlier than the serum creatinine levels increase have been recently identified. This has allowed Acute Dialysis Quality Initiative (ADQI) experts to develop consensus on the use of the biomarkers to diagnose AKI; a new concept of the diagnosis of AKI, by assessing not only the markers of renal function (serum creatinine and diuresis), but also those of injury, and the conceptual model of AKI are proposed.

Full Text

Биомаркеры острого повреждения почек: современные представления и перспективы. - Аннотация. В последние десятилетия неуклонно возрастает частота острого нарушения функции почек, что обусловлено прежде всего ростом распространенности сердечно-сосудистых заболеваний, увеличением продолжительности жизни кардиологических пациентов, а также все более частым применением интервенционных методов обследования и лечения. Ранняя диагностика острого повреждения почек (ОПП) затруднена в связи с "запаздыванием" клинических симптомов и повышением уровня креатинина в сыворотке крови относительно повреждения клеток, которое проявляется прежде всего экспрессией биомаркеров. В последние годы идентифицированы новые биомаркеры ОПП, концентрация которых изменяется достоверно раньше повышения уровня креатинина в сыворотке. Это позволило экспертам ADQI (Acute Dialysis Quality Initiative) разработать консенсус по использованию биомаркеров для диагностики ОПП; предложены новая концепция диагностики ОПП с оценкой не только маркеров функции (креатинин в сыворотке и диурез), но и маркеров повреждения и концептуальная модель ОПП.
×

References

  1. Palevsky P.M. Epidemiology of acute renal failure: the tip of the iceberg. Clin J Am Soc Nephrol 2006; 1: 6-7.
  2. Ali T., Khan I., Simpson W. et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol 2007; 18: 1292-1298.
  3. Xue J.L., Daniels F., Star R.A. et al. Incidence and mortality of acute renal failure in Medicare benefi ciaries, 1992 to 2001. J Am Soc Nephrol 2006; 17: 1135-1142.
  4. Liano F., Pascual J. and the Madrid Acute Renal Failure Study Group. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Kidney Int 1996; 50: 811-818.
  5. Uchino S., Kellum J.A., Bellomo R. et al. and the Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 2005; 294: 813-818.
  6. Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int 2012; 2 (Suppl): 1-138.
  7. Mehta R.L., Kellum J.A., Shah S.V. et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007; 11: R31.
  8. Singbartl K., Kellum J.A. AKI in the ICU: definition, epidemiology, risk stratification, and outcomes. Kidney Int 2011; 81: 819-825.
  9. Wang H.E., Muntner P., Chertow G.M. et al. Acute kidney injury and mortality in hospitalized patients. Am J Nephrol 2012; 35: 349-355.
  10. Nickolas T.L., Schmidt-Ott K.M., Canetta P. et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J Am Coll Cardiol 2012; 59: 246-255.
  11. Stewart J.F.G., Smith N., Kelly K. et al. Adding insult to injury: a review of the care of patients who died in hospital with a primary diagnosis of acute kidney injury (acute renal failure). A report by the National Confidential Enquiry into Patient Outcome and Death. http://www.ncepod.org.uk/ 2009aki.htm 2009.
  12. Latchamsetty R., Fang J., Kline-Rogers E. et al. Prognostic value of transient and sustained increase in in-hospital creatinine on outcomes of patients admitted with acute coronary syndrome. Am J Cardiol 2007; 99 (7): 939-942.
  13. Jose P., Skali H., Anavekar N. et al. Increase in Creatinine and Cardiovascular Risk in Patients with Systolic Dysfunction after Myocardial Infarction. J Am Soc Nephrol 2006; 17: 2886-2891.
  14. Berl T., Henrich W. Kidney-heart interactions: epidemiology, pathogenesis, and treatment. Clin J Am Soc Nephrol 2006; 1: 8-18.
  15. Gottlieb S.S., Abraham W., Butler J. et al. The prognostic importance of different definitions of worsening renal function in congestive heart failure. J Card Fail 2002; 8: 136-141.
  16. Krumholz H.M., Chen Y.T., Vaccarino V. et al. Correlates and impact on outcomes of worsening renal function in patients ≥65 years of age with heart failure. Am J Card 2000; 85: 1110-1113.
  17. Cowie M.R., Komajda M., Murray-Thomas T. et al. Prevalence and impact of worsening renal function in patients hospitalized with decompensated heart failure: results of the prospective outcomes study in heart failure (POSH). EHJ 2006; 27: 1216-1222.
  18. Smith G.L., Vaccarino V., Kosiborod M. et al. Worsening renal function: What is a clinically meaningful change in creatinine during hospitalization with heart failure? J Card Fail 2003; 9: 13-25.
  19. Ronco C., Bellomo R., McCullough P.A. Cardiorenal syndromes in critical care. Contrib Nephrol, vol. 165, 2010. Basel: Karger 2010; 366.
  20. Roghi A., Savonitto S., Cavallini C. et al. Impact of acute renal failure following percutaneous coronary intervention on long-term mortality. J Cardiovasc Med 2008; 9: 375-381.
  21. Lassnigg A., Schmid E.R., Hiesmayr M. et al. Impact of minimal increases in serum creatinine on outcome in patients after cardiothoracic surgery: do we have to revise current definitions of acute renal failure? Crit Care Med 2008; 36:1129-1137.
  22. Vaidya V.S., Ozer J.S., Dieterle F. et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol 2010; 28: 478-485.
  23. Waikar S.S., Bonventre J.V. Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol 2009; 20: 672-679.
  24. Shiao C.C., Wu V.C., Li W.Y. et al. National Taiwan University Surgical In­tensive Care Unit-Associated Renal Failure Study Group: Late initiation of renal replacement therapy is associated with worse outcomes in acute kidney injury after major abdominal surgery. Crit Care 2009; 13: R171.
  25. Ronco C., Cruz D.N. Biomarkers in cardio-renal syndromes (Rassegna). Ligand Assay 2009; 14 (4): 340-349.
  26. Prowle J.R., Liu Y.L., Licari E. et al. Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit Care 2011; 15: R172.
  27. Katz R. Biomarkers and surrogate markers: an FDA perspective. Neuro Rx 2004; 1: 189-195.
  28. Parikh C.R., Coca S.G., Thiessen-Philbrook H. et al. for the TRIBE-AKI Consortium: Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol 2011; 22: 1748-1757.
  29. Ricci Z., Cruz D.N., Ronco C. Classification and staging of acute kidney injury: beyond the RIFLE and AKIN criteria. Nat Rev Nephrol 2011; 7: 201-208.
  30. Haase M., Devarajan P., Haase-Fielitz A. et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol 2011; 57: 1752-1761.
  31. Kümpers P., Hafer C., Lukasz A. et al. Serum neutrophil gelatinase-associated lipocalin at inception of renal replacement therapy predicts survival in critically ill patients with acute kidney injury. Crit Care 2010; 14: R9.
  32. Bagshaw S.M., Bellomo R. Cystatin C in acute kidney injury. Curr Opin Crit Care 2010; 16: 533-539.
  33. Zhang Z., Lu B., Sheng X., Jin N. Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kidney Dis 2011; 58: 356-365.
  34. Bronden B., Eyjolfsson A., Blomquist S. et al. Evaluation of cystatin C with iohexol clearance in cardiac surgery. Acta Anaesthesiol Scand 2011; 55: 196-202.
  35. Wang Q.P., Gu J.W., Zhan X.H. et al. Assessment of glomerular filtration rate by serum cystatin C in patients undergoing coronary artery bypass grafting. Ann Clin Biochem 2009; 46: 495-500.
  36. Delanaye P., Cavalier E., Morel J. et al. Detection of decreased glomerular filtration rate in intensive care units: serum cystatin C versus serum creatinine. BMC Nephrology 2014; 15: 9.
  37. Han W.K., Bonventre J.V. Biologic markers for the early detection of acute kidney injury. Curr Opin Crit Care 2004; 10: 476-482.
  38. Ronco C. NGAL: an emerging biomarker of acute kidney injury. Int J Artif Organs 2008; 31: 199-200.
  39. Wagener G., Jan M., Kim M. et al. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology 2006; 105: 485-491.
  40. Nickolas T.L., O’Rourke M.J., Yang J. et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med 2008; 148: 810-819.
  41. Клименко А.С., Виллевальде С.В., Кобалава Ж.Д. Клинические варианты острого почечного повреждения при декомпенсации хронической сердечной недостаточности: распространенность, тяжесть и исходы. Клин нефрол 2013; 5: 19-26.
  42. VandeVoorde R.G., Katlman T.I., Ma Q. et al. Serum NGAL and cystatin C as predictive biomarkers for acute kidney injury. J Am Soc Nephrol 2006; 17: 404A.
  43. Han W.K., Bailly V., Abichandani R. et al. Kidney injury molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int 2002; 62: 237-244.
  44. Vaidya V.S., Ramirez V., Ichimura T. et al. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 2006; 290: 517-529.
  45. Harmankaya O., Ozturk Y., Basturk T. et al. Urinary excretion of N-acetyl-beta-D-glucosaminidase in newly diagnosed essential hypertensive patients and its changes with effective antihypertensive therapy. Int Urol Nephrol 2001; 32: 583-584.
  46. Matsushima H., Yoshida H., Machiguchi T. et al. Urinary albumin and TGF 1 levels as renal damage indices in patients with congestive heart failure. Clin Exp Nephrol 2002; 6: 21-29.
  47. Liangos O., Perianayagam M. Urinay NAG activity and KIM-1 level are associated with adverse outcomes in acute renal failure. JASN 2007; 18: 904-912.
  48. Авдошина С.В., Ефремовцева М.А., Виллевальде С.В., Кобалава Ж.Д. Острый кардиоренальный синдром: эпидемиология, патогенез, диагностика и лечение. Клин фармакол и тер 2013; 1: 20-25.
  49. Parikh C.R., Devarajan P. New biomarkers of acute kidney injury. Crit Care Med 2008; 36 (4 Suppl): 159-165.
  50. Price R.G. The role of NAG (N-acetyl-beta-D-glucosaminidase) in the diagnosis of kidney disease including the monitoring of nephrotoxicity. Clin Nephrol 1992; 38 (suppl 1): 14-19.
  51. Pepin M.N., Bouchard J., Legault L., Ethier J. Diagnostic performance of fractional excretion of urea and fractional excretion of sodium in the evaluations of patients with acute kidney injury with or without diuretic treatment. Am J Kidney Dis 2007; 50: 566-573.
  52. Okusa M.D., Jaber B.L., Doran P. et al. for the ADQI 10 Workgroup. Physiological biomarkers of acute kidney injury: a conceptual approach to improving outcomes. McCullough P.A., Kellum J.A., Mehta R.L., Murray P.T., Ronco C. (eds): ADQI Consensus on AKI Biomarkers and Cardiorenal Syndromes. Contrib Nephrol. Vol. 182. Basel: Karger 2013: 65-81.
  53. Wang E., Meier D.J., Sandoval R.M. et al. A portable fiberoptic ratiometric fluo­rescence analyzer provides rapid point-of-care determination of glomerular filtration rate in large animals. Kidney Int 2012; 81: 112-117.
  54. Hersch M., Einav S., Izbicki G. Accuracy and ease of use of a novel electronic urine output monitoring device compared with standard manual urinometer in the intensive care unit. J Crit Care 2009; 24: 629; e613-e627.
  55. Kurshner R.F. Bioelectrical impedance analysis: a review of principles and applications. J Am Coll Nutr 1992; 11 (2): 199-209.
  56. Valle R., Aspromonte N., Milani L. et al. Optimizing fluid management in patients with acute decompensated heart failure (ADHF): the emerging role of combined measurement of body hydratation status and brain natriuretic peptide (BNP) levels. Heart Failure Rev 2011; 16 (6): 519-529.
  57. Di Somma S., De Berardinis D., Bongiovanni C. et al. Use of BNP and Bioimpedance to Drive Therapy in Heart Failure Patients Congest Heart Fail 2010; 16 (4 Suppl 1): S56-S61.
  58. Darmon M., Schortgen F., Vargas F. et al. Diagnostic accuracy of Doppler renal resistive index for reversibility of acute kidney injury in critically ill patients. Intensive Care Med 2011; 37: 68-76.
  59. Platt J.F., Rubin J.M., Ellis J.H. Acute renal failure: possible role of duplex Doppler US in distinction between acute prerenal failure and acute tubular necrosis. Radiology 1991; 179: 419-423.
  60. Ciccone M.M., Cortese F., Fiorella A. The clinical role of contrast-enhanced ultrasound in the evaluation of renal artery stenosis and diagnostic superiority as compared to traditional echo-color-Doppler flow imaging. Int Angiol 2011; 30: 135-139.
  61. Benozzi L., Cappelli G., Granito M. Contrast-enhanced sonography in early kidney graft dysfunction. Transplant Proc 2009; 41: 1214-1215.
  62. Owens G.E., King K., Gurney J.G., Charpie J.R. Low renal oximetry correlates with acute kidney injury after infant cardiac surgery. Pediatr Cardiol 2011; 32: 183-188.
  63. Wang Z.J., Kumar R., Banerjee S., Hsu C.Y. Blood oxygen level-dependent (BOLD) MRI of diabetic nephropathy: preliminary experi­ence. J Magn Res Imaging 2011; 33: 655-660.
  64. Juillard L., Lerman L.O., Kruger D.G. Blood oxygen level-dependent measurement of acute intra-renal ischemia. Kidney Int 2004; 65: 944-950.
  65. Murray P.T., Mehta R.L., Shaw A. et al. for the ADQI 10 workgroup. Current use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney International advance online publication 9 October 2013; doi: 10.1038/ki.2013.374.
  66. Haase M., Devarajan P., Haase-Fielitz A. et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol 2011; 57: 1752-1761.

Copyright (c) 2014 Kobalava Z.D., Villeval'de S.V., Efremovtseva M.A., Moiseev V.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies