Role of platelets in the pathogenesis of Coxiella infection


Cite item

Full Text

Abstract

AIM: To determine the relationship of hemostatic disorders to the direct impact of Coxiella burnetii on platelets as one of the key mechanisms of the pathogenesis of Q fever./MATERIAL AND METHODS: Platelet functional activity, plasma hemostatic parameters, von Willibrand factor (vWF) were investigated; and polymerase chain reaction assay was used to determine C. burnetii DNA in the leukocyte and platelet sediments of 41 patients aged 39.9±0.8 years diagnosed with Q fever at the Astrakhan Regional Clinical Hospital in 2009 to 2010/RESULTS: The examinees were recorded to have hemorrhagic phenomena (34.7%) as a hematoma (27.2%), gingival (2.4%) and nasal (9.2%) hemorrhages, vomiting blood streaks (3.4%), melena (4.5%), roseolous-papular (22.1%) and hemorrhagic (9.3%) rashes on the skin. Examination of hemostasis revealed thrombocytopenia and platelet hypoaggregation, increased plasma fibrinogen homeostasis, and significantly elevated vWF during convalescence. C. burnetii genomic DNA was isolated from platelets in all the examinees, from leukocytes and platelets in 78% of cases and only from platelets in 22%. A fluorescence signal indicating the pathogen genome was more early recorded in 54.8% of cases in the platelets than in the leukocytes/CONCLUSION: At week 1 of the disease, the absence of significant plasma hemostatic changes and the retention of the control level vWF with the lower count of platelets and their aggregatory activity suggest that the platelets are able to interact with this pathogen, which is confirmed by the results of genodiagnosis of this rickettsiosis with the pathogens being isolated from the platelet sediment. The determination of platelet aggregatory activity is a primary diagnostic test to detect disorders in the hemostatic system. The higher detection rate of C. burnetii genomic DNA from the platelets than from the leukocyte sediment can recommend that platelets be used as biological material in the diagnosis of Q fever.

Full Text

Роль тромбоцитов в патогенезе коксиеллеза. - Резюме. Цель исследования. Определить связь нарушений в системе гемостаза с прямым влиянием Coxiella burnetii на тромбоциты как одного из ключевых механизмов патогенеза лихорадки Ку. Материалы и методы. С 2009 по 2010 г. на базе Областной клинической больницы Астрахани у 41 больного возрасте 39,9±0,8 года с диагнозом лихорадка Ку исследовали функциональную активность тромбоцитов, показатели плазменного звена гемостаза, фактор Виллибранда (ФВ), а также определяли наличие ДНК С. burnetii в лейкоцитарном и тромбоцитарном осадках крови методом полимеразной цепной реакции (ПЦР). Результаты. Среди наблюдаемых пациентов геморрагические явления регистрировались у 34,7% от общего числа больных в виде гематом (27,2%), кровоточивости десен (2,4%), носовых кровотечений (9,2%), прожилок крови в рвотных массах (3,4%), мелены (4,5%), розеолезно-папулезных (22,1%) и геморрагических (9,3%) элементов сыпи на кожных покровах. Исследования состояния гемостаза выявили тромбоцитопению с гипоагрегационной активностью тромбоцитов, повышение фибриногена в плазменном звене гемостаза, значительное повышение ФВ в период реконвалесценции. Геномная ДНК С. burnetii из тромбоцитов выделена у всех наблюдаемых, при этом в 78% случаев - из лейкоцитов и тромбоцитов, а в 22% - только из тромбоцитов. Флуоресцентный сигнал, извещающий об обнаружении генома возбудителя, фиксировался в 54,8% случаев раньше в тромбоцитах, чем в лейкоцитах. Заключение. Отсутствие значимых изменений плазменного звена гемостаза и сохранение контрольного уровня ФВ при снижении количества тромбоцитов и их агрегационной активности на 1-й неделе болезни указывают на способность тромбоцитов взаимодействовать с этим возбудителем, что подтверждено результатами генодиагностики этого риккетсиоза с выделением возбудителя из тромбоцитарного осадка крови. Определение агрегационной активности тромбоцитов является первичным диагностическим тестом для выявления нарушений в системе гемостаза. Более высокий процент обнаружения генома ДНК С. burnetii из тромбоцитов, чем из лейкоцитарного осадка, позволяет рекомендовать тромбоциты как биологический материал в диагностике лихорадки Ку.
×

References

  1. Durack D.T., Beeson P.B., Petersdorf R.G. Experimental bacterial endocarditis. III. Production of progress of the disease in rabbits. Br J Exp Pathol 1973; 54: 142-151.
  2. Maisch P.A., Calderone R.A. Adherence of Candida albicans to a fibrin-platelet matrix formed in vitro. Infect Immun 1980; 27: 650-656.
  3. Klotz S.A., Harrison J.L., Misra R.P. Aggregated platelets enhance adherence of Candida yeasts to endothelium. J Infect Dis 1989; 160: 669-677.
  4. Nicolau D.P., Freeman C.D., Nightingale C.H. et al. Reduction of bacterial titers by low-dose aspirin in experimental aortic valve endocarditis. Infect Immun 1993; 61: 1593-1595.
  5. Yeaman M.R., Bayer A.S. Platelets in antimicrobial host defense. In: Michelson A, editor. Platelets. 2. New York: Academic 2006; 727-755.
  6. Forrester L.J., Campbell B.J., Berg J.N., Barrett J.T. Aggregation of platelets by Fusobacterium necrophorum. J Clin Microbiol 1985; 22: 245-249.
  7. Czuprynski C.J., Balish E. Interaction of rat platelets with Listeria monocytogenes. Infect Immun 1981; 33: 103-108.
  8. Timmons S., Huzoor-Akbar A., Grabarek J. et al. Mechanism of human platelet activation by endotoxic glycolipid-bearing mutant Re 595 of Salmonella minnesota. Blood 1986; 68: 1015-1023.
  9. Simmonet M., Triadou P., Frehel C. et al. Human platelet aggregation by Yersinia pseudotuberculosis is mediated by invasin. Infect Immun 1992; 60: 366-373.
  10. Sullam P.M., Payan D.G., Dazin P.F., Valone F.H. Binding of viridans group streptococci to human platelets: a quantitative analysis. Infect Immun 1990; 58: 3802-3806.
  11. Yeaman M.R., Sullam P.M., Dazin P.F., Bayer A.S. Characterization of Staphylococcus aureus-platelet binding by quantitative flow cytometric analysis. J Infect Dis 1992; 166: 65-73.
  12. Bayer A.S., Sullam P.M., Ramos M. et al. Staphylococcus aureus induces platelet aggregation via a fibrinogen-dependent mechanism which is independent of principal platelet glycoprotein IIb/IIIa fibrinogen binding domains. Infect Immun 1995; 63: 3634-3641.
  13. Michael R., Yeaman M.R. Platelets in defense against bacterial pathogens. Cell Mol Life Sci 2010; 67 (4): 525-544.
  14. Youssefian T., Drouin A., Masse J.M. et al. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood 2002; 99: 4021-4029.
  15. Голиков П.П., Леменев В.Л., Николаева Н.Ю. Продукция оксида азота лейкоцитами и тромбоцитами периферической крови человека в норме и при сосудистой патологии. Гематол и трансфузиол 2003; 48 (2): 28-32.
  16. Gavrilovskaya I.N., Gorbunova E.E., Mackow E.R. Pathogenic Hantaviruses Direct the Adherence of Quiescent Platelets to Infected Endothelial Cells. J Virol 2010; 84 (9): 4832-4839.
  17. Raymond T., Gorbunova E., Gavrilovskaya I.N., Mackow E.R. Pathogenic hantaviruses bind plexin-semaphorin-integrin domains present at the apex of inactive, bent alphavbeta3 integrin conformers. Proc Natl Acad Sci USA 2005; 102: 1163-1168.
  18. Bergelson J.M., Cunningham J.A., Droguett G. et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320-1323.
  19. Stone D., Liu Y., Shayakhmetov D. et al. Adenovirus-platelet interaction in blood causes virus sequestration to the reticuloendothelial system of the liver. J Virol 2007; 81: 4866-4871.
  20. Othman M., Labelle A., Mazzetti I. et al. Adenovirus-induced thrombocytopenia: the role of von Willebrand factor and P-selectin in mediating accelerated platelet clearance. Blood 2007; 109: 2832-2839.
  21. Gupalo E., Buriachkovskaia L., Othman M. Human platelets express CAR with localization at the sites of intercellular interaction. Virol J 2011; 8: 456.
  22. Wickham T.J., Mathias P., Cheresh D.A., Nemerow G.R. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309-319.
  23. Wickham T.J., Filardo E.J., Cheresh D.A., Nemerow G.R. Integrin alpha v beta 5 selectively promotes adenovirus mediated cell membrane permeabilization. J Cell Biol 1994; 127: 257-264.
  24. Лобан К.М. Важнейшие риккетсиозы человека. Л: Медицина 1980; 376.
  25. Raoult D., Marrie T., Mege J. Natural history and pathophysiology of Q fever. Lancet Infect Dis 2005; 5: 219-26.
  26. Хавкин Т.Н. Патологоанатомическое и экспериментальное изучение морфологии Ку-риккетсиоза. Арх патол 1977; 2: 75-83.
  27. Балаева Н.М. Взаимодействие риккетсий с клетками - эукариотами. ЖМЭИ 1990; 2: 80-86.
  28. Fenollar F., Fournier P.E., Carrieri M.P. et al. Risks factors and prevention of Q fever endocarditis. Clin Infect Dis 2001; 33: 312-316.
  29. Parker N.R., Barralet J.H., Bell A.M. Q fever. Lancet 2006; 367: 679-688.
  30. Delsing C.E., Kullberg B.J., Bleeker-Rovers C.P. Q fever in the Netherlands from 2007 to 2010. Neth J Med 2010; 68: 382-387.
  31. Maurin M., Raoult D. Q fever. Clin Microbiol Rev 1999; 12: 518-553.
  32. Raoult D., Tissot-Dupont H., Foucault C. et al. Q fever 1985-1998. Clinical and epidemiologic features of 1,383 infections. Medicine (Baltimore) 2000; 79: 109-123.
  33. Botelho-Nevers E., Fournier P.E., Richet H. et al. Coxiella burnetii infection of aortic aneurysms or vascular grafts: report of 30 new cases and evaluation of outcome. Eur J Clin Microbiol Infect Dis 2007; 26: 635-640.
  34. Tissot-Dupont H., Raoult D. Q fever. Infect Dis Clin North Am 2008; 22: 505-514.
  35. Frankel D., Richet H., Renvoise A., Raoult D. Q fever in France, 1985-2009. Emerg Infect Dis 2011;17: 350-356.
  36. Camilletti A., Moretti N., Giacchetti G. et al. Decreased nitric oxide levels and increased calcium content in platelets of hypertensive patients. Am J Hypertens 2001; 14: 382-386.
  37. Born G.V.R. Aggregation of blood platelets by adenozine diphosphate and its reversae. Nature 1962; 194 (4832): 927-929.
  38. Габбасов З.А., Попова Е.Г., Гаврилов И.Ю. и др. Новый высокочувствительный метод анализа агрегации тромбоцитов. Лаб дело 1989; 10; 15-18.
  39. Пашанина Т.П., Рыбкина Р.А., Смелянский В.П. Ку-лихорадка: Этиология, эпидемиология, клиника, лабораторная диагностика, лечение. Метод. рекоменд. Волгоград: Изд-во ВолГУ 2004; 28.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies