Endothelial dysfunction gene polymorphisms and the rate of liver fibrosis in chronic hepatitis C


Cite item

Full Text

Abstract

AIM: To assess the association of the CYBA, NOS3, and MTHFR gene polymorphisms and a rate of fibrosis progression in chronic hepatitis C (CHC)/MATERIAL AND METHODS: One hundred and nine CHC patients with the verified stage of liver fibrosis and cirrhosis at its onset were examined. The disease duration was determined in all the patients and additional risk factors of liver lesion were absent. A group of rapidly progressive fibrosis comprised 55 patients with a calculated fibrosis progression rate of 0.130 fibrosis units/year or higher and 54 patients with a progression rate of less than 0.130 fibrosis units/year were assigned to a slow fibrosis group. A compression group consisted of 299 healthy blood donors. The polymorphism of the genes under study was determined by polymerase chain reaction-restriction fragment length polymorphism analysis/RESULTS: The mutant TT genotype of the CYBA gene was significantly more common in the CHC patients with rapidly progressive fibrosis than in those with slowly progressive fibrosis (odds ratio for TT 9.09 at 95% confidence interval, 1.09 to 74.83; p=0.0161). No significant differences were found in the distribution of the alleles and genotypes of the NOS3 and MTHFR genes between the groups of patients with slowly and rapidly progressive fibrosis/CONCLUSION: The findings make it possible to regard the TT genotype of the CYBA gene from the C242T locus as profibrogenic and as one of the markers of the poor course of CHC.

Full Text

Полиморфизм генов дисфункции эндотелия и скорость прогрессирования фиброза печени при хроническом гепатите С. - Резюме. Цель исследования. Оценить взаимосвязь полиморфизма генов CYBA, NOS3 и MTHFR и скорости прогрессирования фиброза при хроническом гепатите С (ХГС). Материалы и методы. Обследовали 109 больных ХГС с установленной стадией фиброза и циррозом печени в его исходе. У всех пациентов определена длительность заболевания и отсутствовали дополнительные факторы поражения печени. Группу с быстро прогрессирующим фиброзом составили 55 больных с расчетной скоростью прогрессирования фиброза 0,130 ед. фиброза/год и выше, а 54 пациента с темпом прогрессирования менее 0,130 ед. фиброза/год отнесены в группу с "медленным фиброзом". Группой сравнения служили 299 здоровых доноров крови. Полиморфизм исследуемых генов определяли методом оценки длины рестриктных фрагментов продуктов полимеразной цепной реакции. Результаты. У больных ХГС с быстрым прогрессированием фиброза достоверно чаще встречался мутантный генотип ТТ гена CYBA по сравнению с группой с медленно прогрессирующим фиброзом (отношение шансов для TT=9,09 при 95% доверительном интервале от 1,09 до 74,83; p=0,0161). Не выявлено достоверных различий по распределению аллелей и генотипов генов NOS3 и MTHFR между группами больных ХГС с медленно- и с быстропрогрессирующим фиброзом. Заключение. Полученные результаты позволяют рассматривать генотип ТТ гена CYBA по локусу C242T как профиброгенный и считать его одним из маркеров неблагоприятного течения ХГС.
×

References

  1. Мухин Н.А., Игнатова Т.М., Абдурахманов Д.Т. и др. Современные возможности персонифицированной терапии хронического гепатита С (Клинический разбор в клинике нефрологии, внутренних и профессиональных болезней им. Е.М. Тареева). Клин мед 2012; 9: 75-78.
  2. Рекомендации по диагностике и лечению взрослых больных гепатитом С. РЖГГК 2013; 2: 41-70.
  3. Ивашкин В.Т., Павлов Ч.С. Фиброз печени. М: ГЭОТАР-Медиа; 2011.
  4. Непомнящих Г.И., Айдагулова С.В., Постникова О.А. и др. Морфогенез хронического гепатита С и инфекционно-вирусного цирроза печени. Клин персп гастр, гепатол 2012; 2: 13-21.
  5. Asselah T., Bieche I., Paradis V. et al. Genetics, genomics, and proteomics: implications for the diagnosis and the treatment of chronic hepatitis C. Semin Liver Dis 2007; 27 (1): 13-27.
  6. Poynard T., Bedossa P., Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. Lancet 1997; 349 (9055): 825-832.
  7. Фадеенко Г.Д., Кравченко Н.А., Ярмыш Н.В. Факторы прогрессирования фиброза печени. Сучасна гастроентерологія 2007; 1: 74-80.
  8. Harrison S.A., Abdurakhmanov D., Shiffman M.L. et al. Intensified peginterferon alpha-2a dosing increases sustained virologic response rates in heavy, high viral load hepatitis C genotype 1 patients with high low-density lipoprotein. J Clin Gastroenterol 2013; 47 (3): 271-279.
  9. Colombo M., Fernandez I., Abdurakhmanov D. et al. Safety and on-treatment efficacy of telaprevir: the early access programme for patients with advanced hepatitis C. Gut 2013 Nov 7. doi: 10.1136/gutjnl-2013-305667. [Epub ahead of print].
  10. Игнатова Т.М. Телапревир в лечении больных хроническим гепатитом С: вопросы безопасности. РЖГГК 2012; 4: 47-57.
  11. Лапшин А.В., Маевская М.В., Ивашкин В.Т. и др. Влияние генетических полиморфизмов гена IL28B на эффективность противовирусной терапии хронического гепатита С стандартным интерфероном-α. РЖГГК 2013; 1: 23-29.
  12. Clark P.J., Thompson A.J., McHutchison J.G. IL28B genomic-based treatment paradigms for patients with chronic hepatitis C infection: the future of personalized HCV therapies. Am J Gastroenterol 2011; 106 (1): 38-45.
  13. Fattovich G., Covolo L., Bibert S. et al. IL28B polymorphisms, IP-10 and viral load predict virological response to therapy in chronic hepatitis C. Aliment Pharmacol Ther 2011; 33 (10): 1162-1172.
  14. Тихонова Н.Ю. Фармакогеномика и фармакогенетика HCV-инфекции. Гепатологический форум: приложение к журналу Клин фармакол и тер 2011; 3: 22-32.
  15. Тихонова Н.Ю., Бурневич Э.З. Новые возможности прогнозирования ответа на противовирусную терапию хронического гепатита С. Фарматека 2012; 2: 32-35.
  16. Самоходская Л.М., Балацкий А.В., Садекова О.Н. и др. Молекулярно-генетический анализ предрасположенности человека к мультифакторным заболеваниям. М: Издательство Московского университета, 2011.
  17. Bataller R., Brenner D.A. Liver fibrosis. J Clin Invest 2005; 115 (2): 209-218.
  18. Bataller R., Sancho-Bru P., Gines P. et al. Liver fibrogenesis: a new role for the renin-angiotensin system. Antioxid Redox Signal 2005; 7 (9-10): 1346-1355.
  19. Bataller R., Schwabe R.F., Choi Y.H. et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest 2003; 112 (9): 1383-1394.
  20. Battaglia S., Angus P., Chin-Dusting J.P. Role of the endothelium on vasoactive agents in patients with liver cirrhosis. J Gastroenterol Hepatol 2006; 21 (7): 1189-1193.
  21. Brenner D.A. Molecular pathogenesis of liver fibrosis. Trans Am Clin Climatol Assoc 2009; 120: 361-368.
  22. De Minicis S., Seki E., Oesterreicher C. et al. Reduced nicotinamide adenine dinucleotide phosphate oxidase mediates fibrotic and inflammatory effects of leptin on hepatic stellate cells. Hepatology 2008; 48 (6): 2016-2026.
  23. de Mochel N.S., Seronello S., Wang S.H. et al. Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection. Hepatology 2010; 52 (1): 47-59.
  24. Friedman S.L. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008; 134 (6): 1655-1669.
  25. Friedman S.L. Evolving challenges in hepatic fibrosis. Nature reviews. Gastroenterol Hepatol 2010; 7 (8): 425-436.
  26. Rockey D.C., Chung J.J. Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology 1998; 114 (2): 344-351.
  27. Seki E., Brenner D.A. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 2008; 48 (1): 322-335.
  28. Gupta T.K., Toruner M., Chung M.K. et al. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology 1998; 28 (4): 926-931.
  29. Hernandez-Guerra M., de Ganzo Z.A., Gonzalez-Mendez Y. et al. Chronic intermittent hypoxia aggravates intrahepatic endothelial dysfunction in cirrhotic rats. Hepatology 2013; 57 (4): 1564-1574.
  30. Hu L.S., George J., Wang J.H. Current concepts on the role of nitric oxide in portal hypertension. World J Gastroenterol 2013; 19 (11): 1707-1717.
  31. Shah V., Toruner M., Haddad F. et al. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology 1999; 117 (5): 1222-1228.
  32. Boudreau H.E., Emerson S.U., Korzeniowska A. et al. Hepatitis C virus (HCV) proteins induce NADPH oxidase 4 expression in a transforming growth factor beta-dependent manner: a new contributor to HCV-induced oxidative stress. J Virol 2009; 83 (24): 12934-12946.
  33. Jain S.K., Pemberton P.W., Smith A. et al. Oxidative stress in chronic hepatitis C: not just a feature of late stage disease. J Hepatol 2002; 36 (6): 805-811.
  34. Булатова И.А., Щекотов В.В., Щекотова А.П. Функциональное состояние эндотелия при хроническом гепатите С. РЖГКК 2009; 3: 42-46.
  35. Zampino R., Marrone A., Durante Mangoni E. et al. Anti-envelope 1 and 2 immune response in chronic hepatitis C patients: effects of hepatitis B virus co-infection and interferon treatment. J Med Virol 2004; 73 (1): 33-37.
  36. Adinolfi L.E., Durante Mangoni E., Andreana A. Interferon and ribavirin treatment for chronic hepatitis C may activate celiac disease. Am J Gastroenterol 2001; 96 (2): 607-608.
  37. Iwakiri Y., Groszmann R.J. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology 2006; 43 (2 Suppl 1): S121-131.
  38. Jacques P.F., Bostom A.G., Williams R.R. et al. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 1996; 93 (1): 7-9.
  39. Philip I., Plantefeve G., Vuillaumier-Barrot S. et al. G894T polymorphism in the endothelial nitric oxide synthase gene is associated with an enhanced vascular responsiveness to phenylephrine. Circulation 1999; 99 (24): 3096-3098.
  40. Лупинская З.А., Зарифьян А.Г., Гурович Т.Ц. и др. Эндотелий. Функция и дисфункция. Бишкек: КРСУ; 2008.
  41. Adinolfi L.E., Ingrosso D., Cesaro G. et al. Hyperhomocysteinemia and the MTHFR C677T polymorphism promote steatosis and fibrosis in chronic hepatitis C patients. Hepatology 2005; 41 (5): 995-1003.
  42. Фетисова И.Н., Добролюбов А.С., Липин М.А. и др. Полиморфизм генов фолатного обмена и болезни человека. ВНМТ 2007; 1: 85-89.
  43. Frosst P., Blom H.J., Milos R. et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10 (1): 111-113.
  44. Fodinger M., Mannhalter C., Wolfl G. et al. Mutation (677 C to T) in the methylenetetrahydrofolate reductase gene aggravates hyperhomocysteinemia in hemodialysis patients. Kidney Int 1997; 52 (2): 517-523.
  45. Giusti B., Gori A.M., Marcucci R. et al. Role of C677T and A1298C MTHFR, A2756G MTR and -786 C/T eNOS gene polymorphisms in atrial fibrillation susceptibility. PLoS One 2007; 2 (6): e495.
  46. Knodell R.G., Ishak K.G., Black W.C. et al. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology 1981; 1 (5): 431-435.
  47. Fabris C., Toniutto P., Bitetto D. et al. Low fibrosis progression of recurrent hepatitis C in apolipoprotein E epsilon4 carriers: relationship with the blood lipid profile. Liver Int 2005; 25 (6): 1128-1135.
  48. Guzik T.J., West N.E., Black E. et al. Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22phox gene on vascular superoxide production in atherosclerosis. Circulation 2000; 102 (15): 1744-1747.
  49. Inoue N., Kawashima S., Kanazawa K. et al. Polymorphism of the NADH/NADPH oxidase p22 phox gene in patients with coronary artery disease. Circulation 1998; 97 (2): 135-137.
  50. Kuroda J., Kitazono T., Ago T. et al. NAD(P)H oxidase p22phox C242T polymorphism and ischemic stroke in Japan: the Fukuoka Stroke Registry and the Hisayama study. European journal of neurology: the official journal of the European Federation of Neurological Societies 2007; 14 (10): 1091-1097.
  51. Cahilly C., Ballantyne C.M., Lim D.S. et al. A variant of p22(phox), involved in generation of reactive oxygen species in the vessel wall, is associated with progression of coronary atherosclerosis. Circul Res 2000; 86 (4): 391-395.
  52. Perianayagam M.C., Liangos O., Kolyada A.Y. et al. NADPH oxidase p22phox and catalase gene variants are associated with biomarkers of oxidative stress and adverse outcomes in acute renal failure. Journal of the American Society of Nephrology: JASN 2007; 18 (1): 255-263.
  53. Hodgkinson A.D., Millward B.A., Demaine A.G. Association of the p22phox component of NAD(P)H oxidase with susceptibility to diabetic nephropathy in patients with type 1 diabetes. Diabetes care 2003; 26 (11): 3111-3115.
  54. Matsunaga-Irie S., Maruyama T., Yamamoto Y. et al. Relation between development of nephropathy and the p22phox C242T and receptor for advanced glycation end product G1704T gene polymorphisms in type 2 diabetic patients. Diabetes care 2004; 27 (2): 303-307.
  55. Li B.H., Zhang L.L., Zhang B.B. et al. Association between NADPH oxidase p22(phox) C242T polymorphism and ischemic cerebrovascular disease: a meta-analysis. PLoS One 2013; 8 (2): e56478.
  56. Moreno M.U., San Jose G., Fortuno A. et al. The C242T CYBA polymorphism of NADPH oxidase is associated with essential hypertension. J Hypertens 2006; 24 (7): 1299-1306.
  57. Diesen D.L., Kuo P.C. Nitric oxide and redox regulation in the liver: part II. Redox biology in pathologic hepatocytes and implications for intervention. J Surg Res 2011; 167 (1): 96-112.
  58. Casas J.P., Cavalleri G.L., Bautista L.E. et al. Endothelial nitric oxide synthase gene polymorphisms and cardiovascular disease: a HuGE review. Am J Epidemiol 2006; 164 (10): 921-935.
  59. Кравченко Н.А., Ярмыш Н.В. Регуляция экспрессии эндотелиальной NO-синтазы и дисфункция сосудистого эндотелия при сердечно-сосудистой патологии. Цитол и генет 2008; 4: 69-81.
  60. Cheng Y.Q., Lin J.S., Wang W.Q. et al. [A study of the association of iNOS and eNOS gene polymorphism with portal hypertension in liver cirrhosis]. Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese J Hepatol 2005; 13 (5): 366-369.
  61. Petrtyl J., Dvorak K., Jachymova M. et al. Functional variants of eNOS and iNOS genes have no relationship to the portal hypertension in patients with liver cirrhosis. Scand J Gastroenterol 2013; 48 (5): 592-601.
  62. Mantaka A., Goulielmos G.N., Koulentaki M. et al. Polymorphisms of genes related to endothelial cells are associated with primary biliary cirrhosis patients of Cretan origin. Hum Immunol 2012; 73 (8): 829-835.
  63. Toniutto P., Fabris C., Falleti E. et al. Methylenetetrahydrofolate reductase C677T polymorphism and liver fibrosis progression in patients with recurrent hepatitis C. Liver Int 2008; 28 (2): 257-263.
  64. Fernandez-Miranda C., Manzano M.L., Fernandez I. et al. [Association of hyperhomocysteinemia with liver steatosis in patients with chronic hepatitis C]. Med Clin (Barc) 2011; 136 (2): 45-49.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies