α-Рецепторы, активируемые пролифераторами пероксисом (PPAR-α) и хроническая сердечная недостаточность: есть ли повод для обсуждения метаболической стратегии терапии?


Цитировать

Полный текст

Аннотация

Аннотация. Несмотря на улучшение прогноза у пациентов с сердечной недостаточностью (СН), которые получают терапию, подавляющую нейрогуморальную активацию (ингибиторы ангиотензинпревращающего фермента, антагонисты рецепторов ангиотензина II, Β-адреноблокаторы, антагонисты альдостерона), сохраняется высокая смертность, прогрессируют сократительная дисфункция миокарда и расширение левого желудочка. Это обусловливает необходимость создания новых подходов к лечению. Очевидно, что СН обусловлена нарушением метаболизма энергетических субстратов в миокарде. Механизмы, лежащие в основе этого феномена, многочисленны и сложны, включая снижение экспрессии и активности в миокарде ключевых ферментов окисления свободных жирных кислот. Экспрессия этих ферментов находится под контролем α-рецепторов, активируемых пролифератором пероксисом (PPAR-α). Таким образом, активация PPAR-α является прямым методом регуляции метаболизма жирных кислот в миокарде. Данные об эффективности терапевтических стратегий, основанных на модуляции метаболизма жирных кислот, противоречивы, что указывает на возможность более сложных молекулярных/биохимических изменений, чем предполагалось ранее. Данные литературы свидетельствуют о перспективности указанной стратегии и ее серьезном терапевтическом потенциале.

Полный текст

α-Рецепторы, активируемые пролифераторами пероксисом (PPAR-α) и хроническая сердечная недостаточность: есть ли повод для обсуждения метаболической стратегии терапии?. - Аннотация. Несмотря на улучшение прогноза у пациентов с сердечной недостаточностью (СН), которые получают терапию, подавляющую нейрогуморальную активацию (ингибиторы ангиотензинпревращающего фермента, антагонисты рецепторов ангиотензина II, Β-адреноблокаторы, антагонисты альдостерона), сохраняется высокая смертность, прогрессируют сократительная дисфункция миокарда и расширение левого желудочка. Это обусловливает необходимость создания новых подходов к лечению. Очевидно, что СН обусловлена нарушением метаболизма энергетических субстратов в миокарде. Механизмы, лежащие в основе этого феномена, многочисленны и сложны, включая снижение экспрессии и активности в миокарде ключевых ферментов окисления свободных жирных кислот. Экспрессия этих ферментов находится под контролем α-рецепторов, активируемых пролифератором пероксисом (PPAR-α). Таким образом, активация PPAR-α является прямым методом регуляции метаболизма жирных кислот в миокарде. Данные об эффективности терапевтических стратегий, основанных на модуляции метаболизма жирных кислот, противоречивы, что указывает на возможность более сложных молекулярных/биохимических изменений, чем предполагалось ранее. Данные литературы свидетельствуют о перспективности указанной стратегии и ее серьезном терапевтическом потенциале.
×

Об авторах

И В Жиров

НИИ кардиологии им. А.Л. Мясникова ФБГУ РКНПК Минздрава России, Москва

Email: izhirov@mail.ru

А В Засеева

НИИ кардиологии им. А.Л. Мясникова ФБГУ РКНПК Минздрава России, Москва

В П Масенко

НИИ кардиологии им. А.Л. Мясникова ФБГУ РКНПК Минздрава России, Москва

С Н Терещенко

НИИ кардиологии им. А.Л. Мясникова ФБГУ РКНПК Минздрава России, Москва

Список литературы

  1. Lloyd-Jones D., Adams R.J., Brown T.M. et al. Heart disease and stroke statistics-2010 update: a report from the American Heart Association. Circulation 2010; 121: e46-e215.
  2. Ingwall J.S. ATP and the heart. Kluwer, Boston 1939.
  3. Herrmann G., Decherd G.M. The chemical nature of heart failure. Ann Intern Med 2003; 12: 1233-1244.
  4. Neubauer S. The failing hear t- an engine out of fuel. NEJM 2007; 356 (11): 1140-1151.
  5. Randle P.J., Garland P.B., Hales C.N., Newsholme E.A. The gluc.ose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; 1: 785-789.
  6. Stanley W.C., Recchia F.A., Lopaschuk G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85: 1093-1129.
  7. Morrow D.A., Givertz M.M. Modulation of myocardial energetics. Circulation 2005; 112: 3218-3221.
  8. Eberli F.R., Weinberg E.O., Grice W.N. et al. Protective effect of increased glycolytic substrate against systolic and diastolic dysfunction and increased coronary resistance from prolonged global under perfusion and reperfusion in isolated rabbit hearts perfused with erythrocyte suspensions. Circ Res 1991; 68: 466-481.
  9. Malhotra R., Brosius F.C. Glucose uptake and glycolysis reduced hypoxia induced apoptosis in cultured neonatal rat cardiac myocytes. J Biol Chem 1999; 274: 12567-12575.
  10. Korvald C., Elvenes O.P., Myrmel T. Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol 2000; 278: H1345-H1351.
  11. Sodi-Pallares D., Testelli M.R., Fishleder B. Effects of intravenous infusion of potassium-insulin-glucose solution on the electrocardiographic signs of myocardial infarction. A preliminary clinical report. Am J Cardiol 1962; 9: 116-181.
  12. Malmberg K. For the DIGAMI study group. Prospective randomized study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. Heart Fail Rev 2012; 17: 35-43.
  13. Malmberg K., Ryde´n L., Wedel H. et al. DIGAMI 2 investigators. Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): effects on mortality and morbidity. Eur Heart J 2005; 26: 650-656.
  14. Hutter J.F., Schweickhardt C., Piper H.M., Spieckermann P.G. Inhibition of fatty acid oxidation and decrease of oxygen consumption of working rat heart by 4-bromocrotonic acid. J Mol Cell Cardiol 1984 16: 105-108.
  15. Chandler M.P., Stanley W.C., Morita H. et al. Short-term treatment with ranolazine improves mechanical efficiency in dogs with chronic heart failure. Circ Res 2002; 91: 278-280.
  16. Lee L., Campbell R., Scheuermann-Freestone M. et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation 2005; 112: 3280-3288.
  17. Schmidt-Schweda S., Holubarsch C. First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci (Lond) 2000; 99: 27-35.
  18. Holubarsch C.J., Rohrbach M., Karrasch M. et al. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin Sci (Lond) 2007; 113: 205-212.
  19. Schwarzer M., Faerber G., Rueckauer T. et al. The metabolic modulators, etomoxir and NVP-LAB121, fail to reverse pressure overload induced heart failure in vivo. Basic Res Cardiol 2009; 104 5: 547-557.
  20. Rupp H., Schultze W., Vetter R. Dietery medium-chain triglyerides can prevent changes in myosine and SR due to CPT I inhibition by etomoxir. Am J Physiol 1995; 269: R630-R640.
  21. Kliewer S.A., Umesono K., Noonan D.J. et al. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 1992; 358: 771-774.
  22. Ventura-Clapier R., Garnier A., Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1. Cardiovasc Res 2008; 79: 208-217.
  23. Campbell F.M., Kozak R., Wagner A et al. A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J Biol Chem 2002; 277 (6): 4098-4103.
  24. Arany Z., Novikov M., Chin S. et al. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α Proc Natl Acad Sci USA 2006; 103 (26): 10086-10091.
  25. Xu W., Hou D., Jiang X. et al. The protective role of peroxisome proliferator-activated receptor γ coactivator-1α in hyperthyroid cardiac hypertrophy. J Cell Physiol 2012; 227 (9): 3243-3253.
  26. Finck B.N., Lehman J.J., Leone T.C. et al. The cardiac phenotype induced by PPAR alpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 2002; 109 (1): 121-130.
  27. Duncan J.G., Bharadwaj K.G., Fong J.L. et al. Rescue of cardiomyopathy in peroxisome proliferator-activated receptor-alpha transgenic mice by deletion of lipoprotein lipase identifies sources of cardiac lipids and peroxisome proliferator-activated receptor-alpha activators. Circulation 2010; 121 (3): 426-435.
  28. Karbowska J., Kochan Z., Smolen´ski R.T. Peroxisome proliferator-activated receptor alpha is downregulated in the failing human heart. Cell Mol Biol Lett 2003; 8 (1): 49-53.
  29. Dewald O., Sharma S., Adrogue J. et al. Downregulation of peroxisome proliferator-activated receptor-alpha gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species and prevents lipotoxicity. Circulation 2005; 112 (3): 407-415.
  30. Goikoetxea M.J., Beaumont J., Gonzalez A. et al. Altered cardiac expression of peroxisome proliferator-activated receptor-isoforms in patients with hypertensive heart disease. Cardiovasc Res 2006; 69 (4): 899-907.
  31. Morgan E.E., Chandler M.P., Young M.E. et al. Dissociation between gene and protein expression of metabolic enzymes in a rodent model of heart failure. Eur J Heart Fail 2006; 8 (7): 687-693.
  32. Osorio J.C., Stanley W.C., Linke A. et al. Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid 9 receptor-a in pacing-induced heart failure. Circulation 2002; 106: 606-612.
  33. Tabernero A., Schoonjans K., Jesel L. et al. Activation of the peroxisome proliferator-activated receptor alpha protects against myocardial ischaemic injury and improves endothelial vasodilatation. BMC Pharmacol 2002; 2: 10.
  34. Wayman N.S., Hattori Y., McDonald M.C. et al. Ligands of the peroxisome proliferator-activated receptors (PPAR-gamma and PPAR-alpha) reduce myocardial infarct size. FASEB J 2002; 16: 1027-1040.
  35. Yue T.L., Bao W., Jucker B.M. et al. Activation of peroxisome proliferator-activated receptor-alpha protects the heart from ischemia/reperfusion injury. Circulation 2003; 108: 2393-2399.
  36. Ichihara S., Obata K., Yamada Y. et al. Attenuation of cardiac dysfunction by a PPAR-alpha agonist is associated with down-regulation of redox-regulated transcription factors. J Mol Cell Cardiol 2006; 41: 318-329.
  37. Yeh C.H., Chen T.P., Lee C.H. et al. Cardiomyocytic apoptosis following global cardiac ischemia and reperfusion can be attenuated by peroxisome proliferatoractivated receptor alpha but not gamma activators. Shock 2006; 26 (3): 262-270.
  38. Brigadeau F., Gele´ P., Wibaux M. et al. The PPARalpha activator fenofibrate slows down the progression of the left ventricular dysfunction in porcine tachycardia-induced cardiomyopathy. J Cardiovasc Pharmacol 2007; 49 (6): 408-415.
  39. Linz W., Wohlfart P., Baader M. et al. The peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist, AVE8134, attenuates the progression of heart failure and increases survival in rats. Acta Pharmacol Sin 2009; 30 (7): 935-946.
  40. Murakami H., Murakami R., Kambe F. et al. Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC. Biochem Biophys Res Commun 2006; 341 (4): 973-978.
  41. Sarma S., Ardehali H., Gheorghiade M. Enhancing the metabolic substrate: PPAR-alpha agonists in heart failure. Heart Fail Rev 2012; 17 (1): 35-43.
  42. Schupp M., Kintscher U., Fielitz J. et al. Cardiac PPARα expression in patients with dilated cardiomyopathy. Eur J Heart Fail 2006; 8: 290-294.
  43. Asai T., Okumura K., Takahashi R. et al. Combined therapy with PPARα agonist and L-carnitine rescues lipotoxic cardiomyopathy due to systemic carnitine deficiency. Cardiovasc Res 2006; 70 (4): 566-577.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Консилиум Медикум", 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Адрес издателя

  • 127055, г. Москва, Алабяна ул., 13, корп.1

Адрес редакции

  • 127055, г. Москва, Алабяна ул., 13, корп.1

По вопросам публикаций

  • +7 (926) 905-41-26
  • editor@ter-arkhiv.ru

По вопросам рекламы

  • +7 (495) 098-03-59

 

 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах